Answer:
Step-by-step explanation:
The input-output table can be made by putting value of x and finding the value of f(x)
f(x) = 3x^2-x+4
f(0) = 3(0)^2-0+4 = 0-0+4 = 4
f(1) = 3(1)^2-1+4 = 3-1+4 = 2+4 =6
f(2) = 3(2)^2-2+4 = 3(4)-2+4 = 12-2+4 = 10+4 = 14
f(3) = 3(3)^2-3+4 = 3(9)-3+4 = 27-3+4 = 24+4 = 28
So put value of x and find f(x) and fill the input-output table.
x f(x)
0 4
1 6
2 14
3 28
Answer:
Step-by-step explanation:
-1/2 + (3/4 x 4/9)
-1/2 + (3/9)
= - 1/2 + (1/3)
= - 1/6
Simplify the following polynomial expression:
(5x^4 - 9x^3 + 7x -1) + ( -8x^4 + 4x^2 - 3x + 2) - ( -4x^3 + 5x -1) (2x - 7)
Lets Simplify Your Equation, Step by Step:
(5x^4 - 9x^3 + 7x -1) + ( -8x^4 + 4x^2 - 3x + 2) - ( -4x^3 + 5x -1) (2x - 7)
Solution: ===> 5x^4 − 37x^3 − 6x^2 + 41x − 6 = 0
Distribute:
= 5x^4 + -9x^3 +7x + −1 + −8x^4 + 4x^2 + −3x + 2 + 8x^4 + −28x^3 + −10x^2 + 37x + −7
Combine Like Terms:
= 5x^4 + −9x^3 +7x + −1 + −8x^4 + 4x^2 + −3x + 2 + 8x^4 + −28x^3 + −10x^2 + 37x + −7
= (5x^4 + −8x^4 +8x^4) + (−9x^3 + −28x^3) +(4x^2+ −10x^2) +(7x + −3x + 37x)+(−1 + 2 + −7)
= 5x^4 + −37x^3 + −6x^2 + 41x + − 6
Hence, Answer:
= 5x^4 −37x^3 −6x^2 + 41x − 6 = 0
Hope that helps!!!! : )