Start by combining like terms -2x + -3x = -5x. 7 + -9 = -2. You should get -5x - 9.
<span>volume of a cube
V= a^3 = 1^3 = 1
answer
</span><span>D . 1 cubic foot</span>
(1 - 2x)⁴
(1 - 2x)(1 - 2x)(1 - 2x)(1 - 2x)
[1(1 - 2x) - 2x(1 - 2x)][1(1 - 2x) - 2x(1 - 2x)]
[1(1) - 1(2x) - 2x(1) - 2x(-2x)][1(1) - 1(2x) - 2x(1) - 2x(-2x)]
(1 - 2x - 2x + 4x²)(1 - 2x - 2x + 4x²)
(1 - 4x + 4x²)(1 - 4x + 4x²)
1(1 - 4x + 4x²) - 4x(1 - 4x + 4x²) + 4x²(1 - 4x + 4x²)
1(1) - 1(4x) + 1(4x²) - 4x(1) - 4x(-4x) - 4x(4x²) + 4x²(1) - 4x²(4x) + 4x²(4x²)
1 - 4x + 4x² - 4x + 16x² - 16x³ + 4x² - 16x³ + 16x⁴
1 - 4x - 4x + 4x² + 16x² + 4x² - 16x³ - 16x³ + 16x⁴
1 - 8x + 24x² - 32x³ + 16x⁴
<span>an equation for the line in point-slope form and general form is :
y = ax+b a : </span>slope ; the <span>Passing through (x' ; y')
</span>y' = ax'+b
y-y' =a(x-x') and : x' =-5 y' =6
calculate a :
let : y = ax+b .....(D)
....<span>y=7x-1...</span>.(D')
.(D) perpendicular to(D') : slope (D) × slope (D') = -1
slope (D') = 7
slop(D)×(7 = -1
slope (D) = -1/7
equation for the line : y-y' =a(x-x')
y-6 =(-1/7) (x+5)