Plot each point on a graph , then count how many you need to go up and then over in this case it is 8 over 1 then calculate the y int so y= 8x -25
Answer:
444
Step-by-step explanation:
since 37/100 students liked chocolate you need to scale that data to the new data size and find thirty seven percent of 1200 which is 444
Answer: Approximately 25187 animals of this species will be left in 2025
Step-by-step explanation:
We would apply the formula for exponential decay which is expressed as
y = b(1 - r)^x
Where
y represents the population of animals after x years.
x represents the number of years.
b represents the initial population of animals.
r represents rate of decay.
From the information given,
b = 200000
r = 4.5% = 4.5/100 = 0.045
x = 2025 - 1980 = 45 years
Therefore,
y = 200000(1 - 0.045)^45
y = 200000(0.955)^45
y = 25187
To simplify the function, we need to know some basic identities involving exponents.
1. b^(ax)=(b^x)^a=(b^a)^x
2. b^(x/d) = (b^x)^(1/d) = ((b^(1/d)^x)
Now simplify f(x), where
f(x)=(1/3)*(81)^(3*x/4)
=(1/3)(3^4)^(3*x/4) [ 81=3^4 ]
=(1/3)(3^(4*3*x/4) [ rule 1 above ]
=(1/3) (3^(3*x)
=(1/3)(3^(3x)) [ or (1/3)(27^x), by rule 1 ]
(A) Initial value is the value of the function when x=0, i.e.
initial value
= f(0)
=(1/3)(3^(3x))
=(1/3)(3^(3*0))
=(1/3)(3^0)
=(1/3)(1)
=1/3
(B) the simplified base base is 3 (or 27 if the other form is used)
(C) The domain for an exponential function is all real values ( - ∞ , + ∞ ).
(D) The range of an exponential function with a positive coefficient and without vertical shift is ( 0, + ∞ ).
Answer:
B, using a sample of size 200
Step-by-step explanation:
just got it right