1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
patriot [66]
3 years ago
14

Let f be the function defined by f(x) = e^(x) cos x.

Mathematics
1 answer:
Pavel [41]3 years ago
3 0
(a)

The average rate of change of f on the interval 0 ≤ x ≤ π is

   \displaystyle
f_{avg\Delta} = \frac{f(\pi) - f(0)}{\pi - 0} =\frac{-e^\pi-1}{\pi}

____________

(b)

f(x) = e^{x} cos x \implies f'(x) = e^x \cos(x) - e^x \sin(x) \implies \\ \\
f'\left(\frac{3\pi}{2} \right) = e^{3\pi/2} \cos(3\pi/2) - e^{3\pi/2} \sin(3\pi/2) \\ \\
f'\left(\frac{3\pi}{2} \right) = 0 - e^{3\pi/2} (-1) = e^{3\pi/2}

The slope of the tangent line is e^{3\pi/2}.

____________

(c)

The absolute minimum value of f occurs at a critical point where f'(x) = 0 or at endpoints.

Solving f'(x) = 0

f'(x) = e^x \cos(x) - e^x \sin(x) \\ \\
0 = e^x \big( \cos(x) - \sin(x)\big)

Use zero factor property to solve.

e^x \ \textgreater \  0\forall x \in \mathbb{R} so that factor will not generate solutions.
Set cos(x) - sin(x) = 0

\cos (x) - \sin (x) = 0 \\
\cos(x) = \sin(x)

cos(x) = 0 when x = π/2, 3π/2, but x = π/2. 3π/2 are not solutions to the equation. Therefore, we are justified in dividing both sides by cos(x) to make tan(x):

\displaystyle\cos(x) = \sin(x) \implies 0 = \frac{\sin (x)}{\cos(x)} \implies 0 = \tan(x) \implies \\ \\
x = \pi/4,\ 5\pi/4\ \forall\ x \in [0, 2\pi]

We check the values of f at the end points and these two critical numbers.

f(0) = e^1 \cos(0) = 1

\displaystyle f(\pi/4) = e^{\pi/4} \cos(\pi/4) = e^{\pi/4}  \frac{\sqrt{2}}{2}

\displaystyle f(5\pi/4) = e^{5\pi/4} \cos(5\pi/4) = e^{5\pi/4}  \frac{-\sqrt{2}}{2} = -e^{\pi/4}  \frac{\sqrt{2}}{2}

f(2\pi) = e^{2\pi} \cos(2\pi) = e^{2\pi}

There is only one negative number.
The absolute minimum value of f <span>on the interval 0 ≤ x ≤ 2π is
-e^{5\pi/4} \sqrt{2}/2

____________

(d)

The function f is a continuous function as it is a product of two continuous functions. Therefore, \lim_{x \to \pi/2} f(x) = f(\pi/2) = e^{\pi/2} \cos(\pi/2) = 0

g is a differentiable function; therefore, it is a continuous function, which tells us \lim_{x \to \pi/2} g(x) = g(\pi/2) = 0.

When we observe the limit  \displaystyle \lim_{x \to \pi/2} \frac{f(x)}{g(x)}, the numerator and denominator both approach zero. Thus we use L'Hospital's rule to evaluate the limit.

\displaystyle\lim_{x \to \pi/2} \frac{f(x)}{g(x)} = \lim_{x \to \pi/2} \frac{f'(x)}{g'(x)} = \frac{f'(\pi/2)}{g'(\pi/2)}

f'(\pi/2) = e^{\pi/2} \big( \cos(\pi/2) - \sin(\pi/2)\big) = -e^{\pi/2} \\ \\&#10;g'(\pi/2) = 2

thus

\displaystyle\lim_{x \to \pi/2} \frac{f(x)}{g(x)} = \frac{-e^{\pi/2}}{2}</span>

You might be interested in
A model car is built to a scale of 1 in. : 2.5 ft. If the model is 5.8 in. Long how long is the car in real life?
Mnenie [13.5K]

Answer:

14.5 ft

Step-by-step explanation:

We are told that the model car is built to a scale of 1 in. : 2.5 ft.

That means 1 inches represents 2.5 ft in actual measurement.

Thus, for a 5.8 inch long model, the real life measurement is;

(5.8 inch × 2.5 ft)/1 inch = 14.5 ft

4 0
3 years ago
Find f(-5) f(x) -4x + 3
Fiesta28 [93]

Answer:

if f(x)= -4x+3

f(-5)= 23

Step-by-step explanation:

first you substitute x for -5

f(-5)= -4(-5)+3

then you multiply

-4(-5)

f(-5)=20+3

you get the positive 20 because negative times negative equals positive

then you just add the rest (20+3) which will give you your answer

f(-5)= 23

8 0
2 years ago
What is the height ? Please help, I need it! Urgent !
Vika [28.1K]

Answer:

207.24 inch^2

Step-by-step explanation:

A=2*3.14*9+2.3.14*3*8

=56.52+150.72

=207.24 square inches

4 0
2 years ago
The question is in the picture​
Fudgin [204]

Answer:

(x) = 1/2x-3/2

Step-by-step explanation:

The inverse is the opposite of the equation given in this case is 2x+3 and the inverse is when you switch the x and the y and you solve for y.

4 0
3 years ago
Which set of measurements could represent the three sides of a triangle?
yawa3891 [41]

Answer:

The side lengths of a right triangle is 11cm, 60cm and 61cm, that could be selected from the given measurements.

Step-by-step explanation:

The measurements are,

                  7cm, 11cm, 54cm, 60cm, 61cm, 65cm

Step:1

                 To check the right angle triangle, Pythagorean theorem can be used.

                For a Pythagorean theorem,

                                     ..........................(1)

               The side values are lower than the hypotenuse,

                                                        ...................................(2)

               Where,

                         a,b - side values

                            c - Hypotenuse

               For right angle triangle,  c > a, b

               Alternative : 1

               Take, a = 7cm, b = 11cm

               From eqn (2),

                                                   =  = 13.04

              The above value is not equal to the any one of the values of ( 54cm. 60cm, 61cm, 65cm ), So its not an sides of right triangle.

               Alternative : 2

               Take, a = 7cm, b = 54cm

               From eqn (2),

                                                   =  = 54.45

              The above value is not equal to the any one of the values of (60cm, 61cm, 65cm ), So its not an sides of right triangle.

               Alternative : 3

               Take, a = 7cm, b = 60cm

               From eqn (2),

                                                   =  = 60.406

              The above value is not equal to the any one of the values of (61cm, 65cm ), So its not an sides of right triangle.

               Alternative : 4

               Take, a = 7cm, b = 61cm

               From eqn (2),

                                                   =  = 61.40

              The above value is not equal to the values of (65cm ), So its not an sides of right triangle.

                 Alternative : 5

               Take, a = 11cm, b = 54cm

               From eqn (2),

                                                   =  = 55.1089

              The above value is not equal to the any one of the values of (60cm, 61cm, 65cm ), So its not an sides of right triangle.      

                Alternative : 6

               Take, a = 11cm, b = 60cm

               From eqn (2),

                                                  =  = 61

              The above value is equal to the values of (61cm ), So its an sides of right triangle. The three sides are 11, 60 and 61.

Step:2

            Check for solution,

                                     

                                           

Result:

            The side lengths of a right triangle is 11cm, 60cm and 61cm, that could be selected from the given measurements.                

Step-by-step explanation: The side lengths of a right triangle is 11cm, 60cm and 61cm.

4 0
3 years ago
Other questions:
  • The Bowling/Laser Tag Decision: A group of friends must decide how many games of bowling and laser tag to play. They decide to p
    13·1 answer
  • Please help me on this ?!?!?!
    14·1 answer
  • What is the definition of polygon????
    10·1 answer
  • What expression is equivalent to 8 - 3
    7·1 answer
  • What is the perimeter of the triangle
    10·2 answers
  • I need help pick only 4 questions
    12·1 answer
  • Complete the process of solving the equation.
    5·1 answer
  • I WILL GIB BRAINLIEST
    7·2 answers
  • I need help answering this question!! Why does the equation (x-4)^2 – 28 = 8 have two solutions?
    5·1 answer
  • A cylinder has a radius of 25 ft and a height of 14 ft. What is the surface area and volume of the cylinder?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!