Answer:
Solution: x = 2, y = -1 or (2, -1)
Step-by-step explanation:
Equation 1: 2x + y = 3
Equation 2: 5x - 2y = 12
Using the substitution method:
Transform the Equation 1 into its slope-intercept form:
2x + y = 3
2x - 2x + y = -2x + 3
y = 2x + 3
Substitute the value of y = -2x + 3 into Equation 2:
5x - 2y = 12
5x - 2(-2x + 3) = 12
5x + 4x - 6 = 12
9x - 6 = 12
9x - 6 + 6 = 12 + 6
9x = 18
9x/9 = 18/9
x = 2
Substitute the value of x = 2 into Equation 2 to solve for y:
5x - 2y = 12
5(2) - 2y = 12
10 - 2y = 12
10 - 10 - 2y = 12 - 10
-2y = 2
-2y/-2 = 2/-2
y = -1
Double-check whether the values for x and y will provide a true statement for both equations:
Equation 1: 2x + y = 3
2(2) + (-1) = 3
4 - 1 = 3
3 = 3 (True statement)
Equation 2: 5x - 2y = 12
5(2) - 2(-1) = 12
10 + 2 = 12
12 = 12 (True statement)
Therefore, the correct answers are: x = 2; y = -1 or (2, -1).
Answer:
A. 112 m^2
Step-by-step explanation:
If the scale factor is 4, the area of the larger figure is 4^2 times that of the smaller one.
... (7 m^2)·4^2 = 112 m^2
_____
The scale factor for area is the square of the scale factor for linear dimensions. When we talk about a scale factor without qualification, we mean the scale factor for linear dimensions.
Answer:
h(t) = -16t2 + 144
h(1) = -16(12) + 144 = 128 ft
h(2) = -16(22) + 144 = 80 ft
h(2) - h(1) = 80 - 128 = -48 ft
It fell 48 ft between t = 1 and t = 2 seconds.
It reaches the ground when h(t) = 0
0 = -16t2 + 144
t = √(144/16) s = 3s
It reaches the ground 3s after being dropped.
Step-by-step explanation:
Answer:
V = 15 pi m^3
Step-by-step explanation:
The volume of a cone is
V = 1/3 pi r^2 h
The radius is 3 and the height is 5
V = 1/3 pi ( 3)^2 *5
V = 15 pi m^3
Answer:
Step-by-step explanation:
N= 100+n(10)