<span>Using
the points (2, 45) (4, 143) and (10, 869), we can plug them into the
following system of 3 equations using the y = ax^2 + bx + c format:
45 = a(2)^2 + b(2) + c
143 = a(4)^2 + b(4) + c
869 = a(10)^2 + b(10) + c
which simplifies to:
45 = 4a + 2b + c
143 = 16a + 4b + c
869 = 100a + 10b + c
Solving the system, we get a = 9, b = -5, and c = 19. Thus the equation is:
c(x) = 9x^2 - 5x + 19
If you have a TI graphing calculator, you can also enter the points by
pressing Stat -> Edit and enter (2, 45) (4, 143) and (10, 869) into
it. Go back and calculate the QuadReg of the points from the Calc tab
and it will give you the same answer.
Now that we know the function that will produce the price of production
for any number of calculators, plug in x = 7 and it will give you the
price to produce 7 calculators.
c(x) = 9x^2 - 5x + 19
==> c(7) = 9(7)^2 - 5(7) + 19
==> c(7) = 441 - 35 + 19
==> c(7) = 425
Therefore, it costs $425 to produce 7 calculators.
Hope this helps.
</span>
27/4
4*6=24
27-24=3
remainder is 3
The answer would be B because the 100 stays in there and you are adding 8% per year. Hope this helps.
(X+4)^5=3125
Use distributive property for x and 5 and 4 and 5 to get
5x+20=3125
Then subtract 20 from both sides to get
5x=3105
Then divide both sides by 5 to get
X= 621