True!!
Eukaryotic DNA never leaves the nucleus; instead, it's transcribed into RNA molecules, which may then travel out of the nucleus.
Answer:
Explanation:
DNA polymerase is an enzyme that helps in the synthesis of new strands of DNA. It is found in both prokaryote and eukaryotes. In prokaryotes, there are 3 types of DNA polymerase and more DNA polymerase found in eukaryotes.
The 3 types of DNA polymerase are DNA polymerase I, DNA polymerase II, DNA polymerase III. The DNA pol I and DNA pol II helps in DNA repair rather than DNA replication. The DNA pol III is the major enzyme that initiates the replication.
DNA polymerase III is a multisubunit enzyme that functions as a dimer of these multiple subunits. The DNA polymerase enzyme has 3 significant enzymatic activities -
All DNA polymerase direct the synthesis of DNA from 3' to 5' end.
It possesses 3' to 5' exonuclease activity. It also helps in proofreading activity by replacing the incorrect nucleotides with the correct base sequence.
Some DNA polymerase has a 5' to 3' exonuclease activity. It is found in the lagging strand.
DNA polymerase is not able to initiate DNA synthesis alone. They need a free 3' end, where the enzyme can add new nucleotides. It means they require 2 primers to initiate the DNA replication in both the direction.
The strands act as complementary to the DNA polymerase. The DNA polymerase adds new strands continuously in 5' to 3' direction in the leading strand. While in lagging strand short fragments of DNA formed. Later they attached by DNA ligase.
DNA polymerase also needs RNA polymerase in some cases to start replication. Such a process is called reverse transcription.
<span>prophase I. the chromosomes condense, and the nuclear envelope breaks down. ...Metaphase I. pairs of homologous chromosomes move to the equator of the cell.Anaphase I. homologous chromosomes move to opposite poles of the cell.Telophase I and Cytokinesis. ...Prophase II. ...Metaphase II. ...Anaphase II. ...<span>Telophase II and Cytokinesis.</span></span>
Answer:
Uncompetitive inhibitor.
Explanation:
Enzymes are the biological catalysts that catalyze the biological process and metabolic activity of the body. Without enzymes, all the biological activity becomes very slow. Enzyme provides suitable speed for the biological process. All enzymes are made up of protein. The uncompetitive inhibitor is the type of enzyme that only disturbs or affects multi-substrate enzymes and joins to enzymes only after one substrate has bound.