Answer:
8
Step-by-step explanation:
<em>   M = Original perimeter = 40</em>
<em>    M = 2 w + 2 l = 2 ( w + l )</em>
<em>           40 = 2 ( w + l )</em>
 Divide both sides by 2 (simplify)
<em>                20 = w + l</em>
<em>                w + l = 20</em>
 Subtract w from both sides
<em>        w + l - w = 20 - w</em>
<em>             l = 20 - w</em>
 If the length is halved and the width is divided by 3 mean:
           <em>New length l1 = l / 2 = ( 20 - w ) / 2 = 10 - w / 2</em>
<em>                       New width w1 = w / 3</em>
The new perimeter is decreased by 24 mean:
         <em> P1 = New perimeter = 40 - 24 = 16</em>
<em>             P1 = 2 w1 + 2 l1 = 2 ( w1 + l1 )</em>
<em>                    16 = 2 ( w1 + l1 )</em>
Divide both sides by 2
            8 = w1 + l1
             w1 + l1 = 8
              w / 3 + 10 - w / 2 = 8
  Subtract 10 to both sides
            w / 3 + 10 - w / 2 - 10 = 8 - 10
              w / 3 - w / 2 = - 2
                2 w / 6 - 3 w / 6 = - 2
                  - w / 6 = - 2
 Multiply both sides by - 6
        ( - 6 ) ∙ ( - w / 6 ) = ( - 2 ) ∙ ( - 6 )
                 w = 12
                    l = 20 - w = 20 - 12 = 8
 Proof:
Original perimeter:
         <em>P = 2 w + 2 l = 2 ( w + l ) = 2 ∙ ( 12 + 8 ) = 2 ∙ 20 = 40</em>
New length:
        <em>l1 = l / 2 = 8 / 2 = 4</em>
New width:
         <em>w1 = w / 3 = 12 / 3 = 4</em>
New rectangle will be the square. ( the square is a special case of the rectangle )
New perimeter:
       <em>P1 = 2 w1 + 2 l1 = 2 ( 4 + 4 ) = 2 ∙ 8 = 16</em>
The length of the original rectangle:
                                 <u>l = 8</u>
                             <u>Answer 2</u>