In general, the sum of the measures of the interior angles of a quadrilateral is 360. This is true for every quadrilateral. This does not help here, because there are two angles (angles B and D) we know nothing about. We only know about opposite angles A and C.
In this case, you can use another theorem.
Opposite angles of an inscribed quadrilateral are supplementary.
m<A + m<C = 180
3x + 6 + x + 2 = 180
4x + 8 = 180
4x = 172
x = 43
m<A = 3x + 6 = 3(43) + 6 = 135
Answer: 135 deg
Answer:
The lines will not intersect.
Step-by-step explanation:
I took the test and this was the correct answer, there isnt a solution.
Answer:
25.15 ponds is the weight of two year old baby corresponds to 10th percentile.
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 29 pounds
Standard Deviation, σ = 3 pounds
We are given that the distribution of weight of two year old babies is a bell shaped distribution that is a normal distribution.
Formula:

We have to find the value of x such that the probability is 0.10
P(X < x)
Calculation the value from standard normal z table, we have,

Thus, 25.15 ponds is the weight of two year old baby corresponds to 10th percentile.
Let's begin by listing the first few multiples of 4: 4, 8, 12, 16, 20, 24, 28, 32, 36, 38, 40, 44. So, between 1 and 37 there are 9 such multiples: {4, 8, 12, 16, 20, 24, 28, 32, 36}. Note that 4 divided into 36 is 9.
Let's experiment by modifying the given problem a bit, for the purpose of discovering any pattern that may exist:
<span>How many multiples of 4 are there in {n; 37< n <101}? We could list and then count them: {40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100}; there are 16 such multiples in that particular interval. Try subtracting 40 from 100; we get 60. Dividing 60 by 4, we get 15, which is 1 less than 16. So it seems that if we subtract 40 from 1000 and divide the result by 4, and then add 1, we get the number of multiples of 4 between 37 and 1001:
1000
-40
-------
960
Dividing this by 4, we get 240. Adding 1, we get 241.
Finally, subtract 9 from 241: We get 232.
There are 232 multiples of 4 between 37 and 1001.
Can you think of a more straightforward method of determining this number? </span>
I’m more than happy to help you