Answer:
cos(θ)
Step-by-step explanation:
Para una función f(x), la derivada es el límite de
h
f(x+h)−f(x)
, ya que h va a 0, si ese límite existe.
dθ
d
(sin(θ))=(
h→0
lim
h
sin(θ+h)−sin(θ)
)
Usa la fórmula de suma para el seno.
h→0
lim
h
sin(h+θ)−sin(θ)
Simplifica sin(θ).
h→0
lim
h
sin(θ)(cos(h)−1)+cos(θ)sin(h)
Reescribe el límite.
(
h→0
lim
sin(θ))(
h→0
lim
h
cos(h)−1
)+(
h→0
lim
cos(θ))(
h→0
lim
h
sin(h)
)
Usa el hecho de que θ es una constante al calcular límites, ya que h va a 0.
sin(θ)(
h→0
lim
h
cos(h)−1
)+cos(θ)(
h→0
lim
h
sin(h)
)
El límite lim
θ→0
θ
sin(θ)
es 1.
sin(θ)(
h→0
lim
h
cos(h)−1
)+cos(θ)
Para calcular el límite lim
h→0
h
cos(h)−1
, primero multiplique el numerador y denominador por cos(h)+1.
(
h→0
lim
h
cos(h)−1
)=(
h→0
lim
h(cos(h)+1)
(cos(h)−1)(cos(h)+1)
)
Multiplica cos(h)+1 por cos(h)−1.
h→0
lim
h(cos(h)+1)
(cos(h))
2
−1
Usa la identidad pitagórica.
h→0
lim
−
h(cos(h)+1)
(sin(h))
2
Reescribe el límite.
(
h→0
lim
−
h
sin(h)
)(
h→0
lim
cos(h)+1
sin(h)
)
El límite lim
θ→0
θ
sin(θ)
es 1.
−(
h→0
lim
cos(h)+1
sin(h)
)
Usa el hecho de que
cos(h)+1
sin(h)
es un valor continuo en 0.
(
h→0
lim
cos(h)+1
sin(h)
)=0
Sustituye el valor 0 en la expresión sin(θ)(lim
h→0
h
cos(h)−1
)+cos(θ).
cos(θ)
Answer:
A. 7,6,14
Step-by-step explanation:
Rules for side lengths of triangle.
1. Any side should be less then the sum of the other two angles.
2. The same side should be greater than the subtraction of the other side lengths(bigger side - smaller side)
A.
7 < 6+14 . Correct
7> 14-6 . Incorrect
This cannot be a solution (impossible)
B.
4<4+4 . Correct
4>4-4 . correct
This is a solution (equilateral triangle)
C.
6<6+2 . Correct
6>6-2 . Correct
This is a solution (isosceles triangle)
D.
7<8+13 . Correct
7>13-8 . Correct
This is a solution (scalene triangle)
If my answer is incorrect, pls correct me!
If you like my answer and explanation, mark me as brainliest!
-Chetan K
Answer:
The interval (162, 188)would represent the middle 68% of the scores of all the games that Rashaad bowls.
Step-by-step explanation:
As per the empirical rule of normal distribution, for any normally distributed curve, the values lie between the extreme values i.e
(μ - σ) and (μ + σ).
Given
μ = 175
σ = 13
(μ - σ) = 175 -13 = 162
(μ + σ) = 175 + 13 = 188
Hence the required interval is 162, 188