1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Reil [10]
2 years ago
10

Please help! I’ll give brainliest!!!

Mathematics
1 answer:
Neko [114]2 years ago
7 0
The answer would be 25387
You might be interested in
Round 512,162 and 84,097 to the nearest ten
bekas [8.4K]
First one is 512,160 and the second is 84,100
6 0
4 years ago
Please help me to prove this!​
Sophie [7]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B = C                → A = C - B

                                          → B = C - A

Use the Double Angle Identity:     cos 2A = 2 cos² A - 1

                                             → (cos 2A + 1)/2 = cos² A

Use Sum to Product Identity: cos A + cos B = 2 cos [(A + B)/2] · 2 cos [(A - B)/2]

Use Even/Odd Identity: cos (-A) = cos (A)

<u>Proof LHS → RHS:</u>

LHS:                     cos² A + cos² B + cos² C

\text{Double Angle:}\qquad \dfrac{\cos 2A+1}{2}+\dfrac{\cos 2B+1}{2}+\cos^2 C\\\\\\.\qquad \qquad \qquad =\dfrac{1}{2}\bigg(2+\cos 2A+\cos 2B\bigg)+\cos^2 C\\\\\\.\qquad \qquad \qquad =1+\dfrac{1}{2}\bigg(\cos 2A+\cos 2B\bigg)+\cos^2 C

\text{Sum to Product:}\quad 1+\dfrac{1}{2}\bigg[2\cos \bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A-2B}{2}\bigg)\bigg]+\cos^2 C\\\\\\.\qquad \qquad \qquad =1+\cos (A+B)\cdot \cos (A-B)+\cos^2 C

\text{Given:}\qquad \qquad 1+\cos C\cdot \cos (A-B)+\cos^2C

\text{Factor:}\qquad \qquad 1+\cos C[\cos (A-B)+\cos C]

\text{Sum to Product:}\quad 1+\cos C\bigg[2\cos \bigg(\dfrac{A-B+C}{2}\bigg)\cdot \cos \bigg(\dfrac{A-B-C}{2}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =1+2\cos C\cdot \cos \bigg(\dfrac{A+(C-B)}{2}\bigg)\cdot \cos \bigg(\dfrac{-B-(C-A)}{2}\bigg)

\text{Given:}\qquad \qquad =1+2\cos C\cdot \cos \bigg(\dfrac{A+A}{2}\bigg)\cdot \cos \bigg(\dfrac{-B-B}{2}\bigg)\\\\\\.\qquad \qquad \qquad =1+2\cos C \cdot \cos A\cdot \cos (-B)

\text{Even/Odd:}\qquad \qquad 1+2\cos C \cdot \cos A\cdot \cos B\\\\\\.\qquad \qquad \qquad \quad =1+2\cos A \cdot \cos B\cdot \cos C

LHS = RHS: 1 + 2 cos A · cos B · cos C = 1 + 2 cos A · cos B · cos C   \checkmark

5 0
3 years ago
Which pair of angles are alternate exterior angles of parallel lines v and w?
vampirchik [111]

Answer:

a and d

Step-by-step explanation:

v and w are parallel lines

R is the transversal

Alternate exterior means on the opposite sides of the transversal and outside of the parallel linea

a and d are alternate exterior angles

8 0
2 years ago
What is the x? what could the x be?
sineoko [7]
It would be x=3.50 because 8 divided by 4 is 2 and 14 divided by 4 is 3.5
7 0
4 years ago
If a = 1/2, what is the value of a²?​
Ipatiy [6.2K]

Answer:

1/4

Step-by-step explanation:

a^2 = 1/2^2

1/2^2= 1/4

5 0
3 years ago
Read 2 more answers
Other questions:
  • The length around the outside of semicircle C from point A to point D to point B is 37 inches. The perimeter of the semicircle i
    6·1 answer
  • Solve x in the diagram below
    13·1 answer
  • What is the sum of two-fifths plus one-tenth?
    15·1 answer
  • 8•(40+7)=(8• )+(8•7)
    14·1 answer
  • Which statement best represents the situation for the given ordered
    15·2 answers
  • Identify the constant of proportionality for the following graph:
    14·1 answer
  • Please help! please show work. will give brainleist!
    6·2 answers
  • Can someone help me understand this.​
    11·2 answers
  • What is the slope of the line that passes through the points (-9,10 ) and (-6,9 )?
    6·1 answer
  • 12) Anna is putting a ribbon around a
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!