I have taken that test (although I don't see you're statements)
I believe the statements to choose from are:
A.) The slope of the line is −10.
B.) The slope of the line is 3.
C.) One point on the line is (3, 6).
D.) One point on the line is (3,−6)
<u>The answers are:</u>
A.) The slope of the line is -10
D.) One point on the line is (3,-6)
<u>Explanation: </u>
The given equation of line is (1). The point slope form of a line is (2) Where m is the slope of line and (x₁,y₁) are points. On comparing (1) and (2) we get The slope of given line is -10 and the line passing through the points (3,-6).
The mistake is line 4, she should have divided 42 by 5, not add 5 and 16
Answer:
- B) One solution
- The solution is (2, -2)
- The graph is below.
=========================================================
Explanation:
I used GeoGebra to graph the two lines. Desmos is another free tool you can use. There are other graphing calculators out there to choose from as well.
Once you have the two lines graphed, notice that they cross at (2, -2) which is where the solution is located. This point is on both lines, so it satisfies both equations simultaneously. There's only one such intersection point, so there's only one solution.
--------
To graph these equations by hand, plug in various x values to find corresponding y values. For instance, if you plugged in x = 0 into the first equation, then,
y = (-3/2)x+1
y = (-3/2)*0+1
y = 1
The point (0,1) is on the first line. The point (2,-2) is also on this line. Draw a straight line through the two points to finish that equation. The other equation is handled in a similar fashion.
Answer:
1/18 or 0.05
Step-by-step explanation:
Answer:
(x,y) becomes (-y,x) so (3,2) would become (-2,3)