Answer:
-2.7 < y
Step-by-step explanation:
2.9 < 5.6+y
Subtract 5.6 from each side
2.9-5.6 < 5.6-5.6+y
-2.7 < y
Option first and option second are correct because the common difference of the sequence is the same as the slope of the graph.
<h3>What is a sequence?</h3>
It is defined as the systematic way of representing the data that follows a certain rule of arithmetic.
The question is incomplete.
The question is:
What can be concluded about the sequences 19, 15, 11, 7, . . . represented on the graph? Check all that apply.
- The common difference of the sequence is the same as the slope of the graph.
- The slope of the graph is –4.
- The next term in the sequence is represented by point (4, 3).
- f(x) = –4x + 19 represents the sequence.
- An infinite number of points can be determined to follow this sequence.
The graph is attached to the picture please refer to the graph.
We have an arithmetic sequence:
19, 15, 11, 7,...
The first term is:
a = 19
Common difference d = 15-19 = -4
The nth term:
a(n) = 19 + (n-1)(-4)
a(n) = 19 -4n + 4
a(n) = -4n + 23
We can write above expression as:
f(x) = -4x + 23
Slope of the equation = -4
The correct options are:
- The common difference of the sequence is the same as the slope of the graph.
- The slope of the graph is –4.
Thus, an option first and option second are correct because the common difference of the sequence is the same as the slope of the graph.
Learn more about the sequence here:
brainly.com/question/21961097
#SPJ1
Answer:
y = x^2 + 9x + 6 No remainder.
Step-by-step explanation:
The divisor will be 3 The sign on the divisor switches.
3 || 1 + 6 - 21 - 18 ||
3 27 + 18
================================
1 9 6 0
The answser is x^2 + 9x + 6
Answer:
Using trigonometric ratio:


From the given statement:
and sin < 0
⇒
lies in the 3rd quadrant.
then;

Using trigonometry identities:
Substitute the given values we have;

Since, sin < 0
⇒
now, find
:

Substitute the given values we have;

Therefore, the exact value of:
(a)

(b)

B

5,000
because the library has more than or = to 5000 books.