Answer:
1) 6+4x and 5+3x. 2) 3+6x and 10+2x. 3) 15+4x and 2+3x
Step-by-step explanation:
finding area is just multiplying the sides so find numbers that multiply to make 30 and 12
The product of the greatest common divisor and the least common multiple of two numbers is always the product of the two numbers. So, you have

Answer:
1
Step-by-step explanation:
A) Find KM∠KEM is a right angle hence ΔKEM is a right angled triangle Using Pythogoras' theorem where the square of hypotenuse is equal to the sum of the squares of the adjacent sides we can answer the
KM² = KE² + ME²KM² = 8² + (3√5)² = 64 + 9x5KM = √109KM = 10.44
b)Find LMThe ratio of LM:KN is 3:5 hence if we take the length of one unit as xlength of LM is 3xand the length of KN is 5x ∠K and ∠N are equal making it a isosceles trapezoid. A line from L that cuts KN perpendicularly at D makes KE = DN
KN = LM + 2x 2x = KE + DN2x = 8+8x = 8LM = 3x = 3*8 = 24
c)Find KN Since ∠K and ∠N are equal, when we take the 2 triangles KEM and LDN, they both have the same height ME = LD.
∠K = ∠N Hence KE = DN the distance ED = LMhence KN = KE + ED + DN since ED = LM = 24and KE + DN = 16KN = 16 + 24 = 40
d)Find area KLMNArea of trapezium can be calculated using the formula below Area = 1/2 x perpendicular height between parallel lines x (sum of the parallel sides)substituting values into the general equationArea = 1/2 * ME * (KN+ LM) = 1/2 * 3√5 * (40 + 24) = 1/2 * 3√5 * 64 = 3 x 2.23 * 32 = 214.66 units²
Answer: Yes it is.
Step-by-step explanation: So we are already told that segment AC is congruent to segment DC. They both have a right angle, as indicated by the angle symbol, and they share side-length BC.
According to the Hypotenuse-Leg Theorem, two right triangles that have a congruent hypotenuse and a corresponding, congruent leg are congruent triangles. AC and DC are hypotenuses and they are congruent. And BC, the shared side, is a corresponding congruent leg. And since they are both right triangles, we then know that the HL Theorem applies.