Answer:
1.8
Explanation:
add all of the numbers up
9
divide by number of numbers given
9/ 5= 1.8
The rate of disappearance of O2(g) under the same conditions is 2.5 × 10⁻⁵ m s⁻¹.
<h3>What is the rate law of a chemical equation? </h3>
The rate law of a chemical reaction equation is usually dependent on the concentration of the reactant species in the equation.
The chemical reaction given is;

The rate law for this reaction can be expressed as:
![\mathbf{= -\dfrac{1}{2}\dfrac{d[NO]}{dt} = -\dfrac{1}{1}\dfrac{d[O_2]}{dt}= +\dfrac{1}{2}\dfrac{d[NO_2]}{dt}}](https://tex.z-dn.net/?f=%5Cmathbf%7B%3D%20-%5Cdfrac%7B1%7D%7B2%7D%5Cdfrac%7Bd%5BNO%5D%7D%7Bdt%7D%20%3D%20-%5Cdfrac%7B1%7D%7B1%7D%5Cdfrac%7Bd%5BO_2%5D%7D%7Bdt%7D%3D%20%2B%5Cdfrac%7B1%7D%7B2%7D%5Cdfrac%7Bd%5BNO_2%5D%7D%7Bdt%7D%7D)
Recall that:
- The rate of disappearance of NO(g) = 5.0× 10⁻⁵ m s⁻¹.
- Since both NO and O2 are the reacting species;
Then:
- The rate of disappearance of NO(g) is equal to the rate of disappearance of O2(g)
![\mathbf{= -\dfrac{1}{2}\dfrac{d[NO]}{dt} = -\dfrac{1}{1}\dfrac{d[O_2]}{dt}}](https://tex.z-dn.net/?f=%5Cmathbf%7B%3D%20-%5Cdfrac%7B1%7D%7B2%7D%5Cdfrac%7Bd%5BNO%5D%7D%7Bdt%7D%20%3D%20-%5Cdfrac%7B1%7D%7B1%7D%5Cdfrac%7Bd%5BO_2%5D%7D%7Bdt%7D%7D)

Thus;
The rate of disappearance of O2 = 2.5 × 10⁻⁵ m s⁻¹.
Therefore, we can conclude that two molecules of NO are consumed per one molecule of O2.
Learn more about the rate law here:
brainly.com/question/14945022
Explanation:The sequence of the bases?, A, C, G and T, in DNA determines our unique genetic code and provides the instructions for producing molecules in the body. The cell reads the DNA code in groups of three bases.
Answer:
The bird in a cage image depicts restricted freedom in "Sympathy".
Explanation: