Answer:
7 or 8 hours, depending on the answer you're looking for
Step-by-step explanation:
Assuming she wants to make exactly $350, she would need to work for 7 hours making the larger arrangements.
If she works for 8 hours, she can make the most money making the larger arrangements {$400}
(っ◔◡◔)っ ♥ Hope this helped! Have a great day! :) ♥
BTW, brainliest would be greatly appreciated, I only need one more before I advance, thanks!
Sine 40 = 5 / hypotenuse
0.64279 = 5 / hypotenuse
hypotenuse = 5 / 0.64279
<span><span>hypotenuse = 7.7786
</span>tangent (50) = opp / adj
</span><span>tangent (50) = opposite / 5
1.1918 * 5 = </span><span>opposite</span>
opposite side = 5.959
Answer:

Step-by-step explanation:
The motion equations that describe the ball are, respectively:
![x = \left[\left(152\,\frac{ft}{s} \right)\cdot \cos 52^{\circ} \right] \cdot t](https://tex.z-dn.net/?f=x%20%3D%20%5Cleft%5B%5Cleft%28152%5C%2C%5Cfrac%7Bft%7D%7Bs%7D%20%5Cright%29%5Ccdot%20%5Ccos%2052%5E%7B%5Ccirc%7D%20%5Cright%5D%20%5Ccdot%20t)
![y = 4.5\,ft + \left[\left(152\,\frac{ft}{s} \right)\cdot \sin 52^{\circ} \right] \cdot t - \frac{1}{2}\cdot \left(32.174\,\frac{ft}{s^{2}} \right) \cdot t^{2}](https://tex.z-dn.net/?f=y%20%3D%204.5%5C%2Cft%20%2B%20%5Cleft%5B%5Cleft%28152%5C%2C%5Cfrac%7Bft%7D%7Bs%7D%20%5Cright%29%5Ccdot%20%5Csin%2052%5E%7B%5Ccirc%7D%20%5Cright%5D%20%5Ccdot%20t%20-%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%5Cleft%2832.174%5C%2C%5Cfrac%7Bft%7D%7Bs%5E%7B2%7D%7D%20%5Cright%29%20%5Ccdot%20t%5E%7B2%7D)
The time required for the ball to hit the ground is computed from the second equation. That is to say:
![4.5\,ft + \left[\left(152\,\frac{ft}{s} \right)\cdot \sin 52^{\circ} \right] \cdot t - \frac{1}{2}\cdot \left(32.174\,\frac{m}{s^{2}} \right) \cdot t^{2} = 0](https://tex.z-dn.net/?f=4.5%5C%2Cft%20%2B%20%5Cleft%5B%5Cleft%28152%5C%2C%5Cfrac%7Bft%7D%7Bs%7D%20%5Cright%29%5Ccdot%20%5Csin%2052%5E%7B%5Ccirc%7D%20%5Cright%5D%20%5Ccdot%20t%20-%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%5Cleft%2832.174%5C%2C%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D%20%5Cright%29%20%5Ccdot%20t%5E%7B2%7D%20%3D%200)
Given that formula is a second-order polynomial, the roots of the equation are described below:
and 
Just the first root offers a realistic solution. Then,
.