8y-10-5y+8=o
+10. +10.
8y -5y. +8
3y+8
Answer:
To find the sum of a + b where a and b are rational number.
1. when a and b are natural numbers
just add them . for example a =3, b=8
then ,a + b = 11
2. When a and b are whole numbers,
simply add them . for example a= 0, b=8
a+ b = 0 + 8= 8
3. When a and b are integers
for example, a =-1 b=8,
a+ b= -1+ 8 =7,
a=-2, b= -8
a+ b= -2-8=-10
a= -6 , b=2
a+ b= -6 + 2= -4
a= 8, b= -2
a+ b= 8 +(-2) =6
I have written this because Rational number = [Integers{Whole number(Natural number)}]
now when a= Any fraction= and b = Any fraction=
now ,
Find L.C.M of q and v
= if q and v are Co-prime , just multiply them to find their L.C.M.
For example 14,9. LCM=14×9=126
Otherwise, Find factors of q and v . Then take out common factors first and then multiply the remaining with with common factors.For example
q=12 and v=18
12 =2×2×3
18=2×3×3
common factor =2,3
non common=2,3
L.C.M= 2×2×3×3=36
Suppose LCM of q and v = r
then ,
=
=
then ,
a + b=
Area of a semicircle is 1/2* πr^2
Area of a square is s^2
Square’s area: 4mm^2
The radius is 3mm
Plug into the equation
1/2* π(3^2)
1/2* π(9)
We can use 3.14 as an estimate of pi
1/2*28.26
14.13mm^2
Now just add them both
Total area 18.13mm^2
Answer:
The amount of money in Enid bank account can be written as a linear equation.
Ye = Xe + $4*m
where Ye is the money that Enid has in her account, m is the number of months that have passed since she opened it, and Xe is the initial deposit.
For Jim, the equation is similar:
Yj = Xj + $3*m
where Yj and Xj are similar as above.
Between May 15 and December 31 of the same year, we have 7 months (where i am counting December because the deposit is made in the first day of the month).
Then we have that:
Ye = $72 = Xe + $4*7 = Xe + $28
Xe = $72 - $28 = $44
So in May 15, Enid deposited $44.
For Jim we have:
Yj = $72 = Xj + $3*7 = Xj + $21
Xj = $72 - $21 = $51
So in May 15, Jim deposited $51.