Answer:
A1 / B1 ;
(D1 - A1) / B1 ;
(A1 - E1*A1) / B1
Step-by-step explanation:
A1 = original price of car
B1 = annual Depreciation amount
Number of years it will take for the car to depreciate totally :
Using the straight line Depreciation relation :
y = mx + c
c = intercept = initial or original value of car
m = annual Depreciation amount
x = number of years
y = value after x years
For total Depreciation, final value, y = 0
0 = mx + c
mx = - c
x = - c / m
Hence, x = A1 / B1
B.)
D1 = car value
Length it will take for car to depreciate to value in D1 :
y = mx + c
y = D1; m = B1 ; c = A1
D1 = B1x + A1
B1x = D1 - A1
x = (D1 - A1) / B1
C.)
E1 = decrease percentage
Time it takes for car to decrease by percentage in E1
y = E1 * A1
E1 * A1 = B1x + A1
(A1 - E1*A1) = B1x
x = (A1 - E1*A1) / B1
Kabhi Kabhi lagta ha ki apun ich god ha
Yes. When the function f(x) = x3 – 75x + 250 is divided by x + 10, the remainder is zero. Therefore, x + 10 is a factor of f(x) = x3 – 75x + 250.
According to the remainder theorem when f(x) is divided by (x+a) the remainder is f(-a).
In this case,
f(x)=x^3-75x+250
(x+a)=(x+10)
Therefore, the remainder f(-a)=f(-10)
=x^3-75x+250
=(-10)^3-(75*-10)+250
=-1000+750+250
=1000-1000
=0.
The remainder is 0. So, (x+10) is a factor of x^3-75x+250.
Put the argument value where the variable is, then evaluate.
For f(x), you want f(2).
f(2) = 2² + 1 = 4+1 = 5
For g(x), you want g(1).
g(1) = 3·1 +1 = 4
For [f(2) - g(1)] you want the difference of the above values.
[f(2) - g(1)] = [5 - 4] = 1