Answer: All real numbers
Step-by-step explanation:
You can take the cube root of positive and negative numbers, as well as zero.
Answer:
x = 12
Step-by-step explanation:
Solve for x:
(-3 x)/2 - 9 = -27
Put each term in (-3 x)/2 - 9 over the common denominator 2: (-3 x)/2 - 9 = (-18)/2 - (3 x)/2:
(-18)/2 - (3 x)/2 = -27
(-18)/2 - (3 x)/2 = (-3 x - 18)/2:
(-3 x - 18)/2 = -27
Multiply both sides of (-3 x - 18)/2 = -27 by 2:
(2 (-3 x - 18))/2 = -27×2
(2 (-3 x - 18))/2 = 2/2×(-3 x - 18) = -3 x - 18:
-3 x - 18 = -27×2
2 (-27) = -54:
-3 x - 18 = -54
Add 18 to both sides:
(18 - 18) - 3 x = 18 - 54
18 - 18 = 0:
-3 x = 18 - 54
18 - 54 = -36:
-3 x = -36
Divide both sides of -3 x = -36 by -3:
(-3 x)/(-3) = (-36)/(-3)
(-3)/(-3) = 1:
x = (-36)/(-3)
The gcd of -36 and -3 is -3, so (-36)/(-3) = (-3×12)/(-3×1) = (-3)/(-3)×12 = 12:
Answer: x = 12
Cº b<span>. </span>Points<span> on the </span>x<span>-axis ( </span>Y. 0)-7<span> (6 </span>2C<span>) are mapped to </span>points<span>. --IN- on the </span>y<span>-axis. ... </span>Describe<span> the transformation: 'Reflect A ALT if A(-5,-1), L(-</span>3,-2), T(-3,2<span>) by the </span>rule<span> (</span>x<span>, </span>y) → (x<span> + </span>3<span>, </span>y<span> + </span>2<span>), then reflect over the </span>y-axis, (x,-1) → (−x,−y<span>). A </span>C-2. L (<span>0.0 tº CD + ... </span>translation<span> of (</span>x,y) → (x–4,y-3)? and moves from (3,-6) to (6,3<span>), by how.</span>
Identity property of addition