well, first off, when it comes to volumes by rotation, we'd want to graph them, Check the picture below. Our rotation over the axis will give us a "washer", so we'll be using the washer method.
now, our axis of rotation is the y-axis or namely x = 0, x = 0 is a vertical line, meaning we have to put the functions in y-terms, that is in f(y) form

if we look at the picture, the parabola is the farthest from the axis of rotation and the line is the closest, or namely R² and r² respectively.
the way I get the area for R² and r², is by using the same I do with "area under the curve", so if I say call the axis of rotation h(y), the way I get the area is
R => f(y) - h(y)
r => g(y) - h(y)
so let's proceed.
![\textit{area under the curve}\\ \begin{array}{llll} \sqrt{y}- 0\implies &\sqrt{y}\\ \frac{y}{4}-0\implies &\frac{y}{4} \end{array}\qquad \qquad \begin{array}{llll} \stackrel{R^2}{(\sqrt{y})^2}-\stackrel{r^2}{\left( \frac{y}{4} \right)^2}\\[-0.5em] \hrulefill\\ y\qquad -\qquad \frac{y^2}{16} \end{array}](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20under%20the%20curve%7D%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%20%5Csqrt%7By%7D-%200%5Cimplies%20%26%5Csqrt%7By%7D%5C%5C%20%5Cfrac%7By%7D%7B4%7D-0%5Cimplies%20%26%5Cfrac%7By%7D%7B4%7D%20%5Cend%7Barray%7D%5Cqquad%20%5Cqquad%20%5Cbegin%7Barray%7D%7Bllll%7D%20%5Cstackrel%7BR%5E2%7D%7B%28%5Csqrt%7By%7D%29%5E2%7D-%5Cstackrel%7Br%5E2%7D%7B%5Cleft%28%20%5Cfrac%7By%7D%7B4%7D%20%5Cright%29%5E2%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20y%5Cqquad%20-%5Cqquad%20%5Cfrac%7By%5E2%7D%7B16%7D%20%5Cend%7Barray%7D)
now, we want to get the area enclosed by both, and thus we'd need their points of intersection, setting both to
which in short gives us the bounds of 0 and 16.
![\pi \displaystyle\int_{0}^{16}\left( y - \cfrac{y^2}{16} \right)dy\implies \pi \int_{0}^{16}y\cdot dy-\pi \int_{0}^{16}\cfrac{y^2}{16}\cdot dy\\\\\\\pi \cdot \left. \cfrac{y^2}{2} \right]_{0}^{16}-\pi \cdot \left. \cfrac{y^3}{48} \right]_{0}^{16}\implies 128\pi -\cfrac{256\pi }{3}\implies \boxed{\cfrac{128\pi }{3}}](https://tex.z-dn.net/?f=%5Cpi%20%5Cdisplaystyle%5Cint_%7B0%7D%5E%7B16%7D%5Cleft%28%20y%20-%20%5Ccfrac%7By%5E2%7D%7B16%7D%20%5Cright%29dy%5Cimplies%20%5Cpi%20%5Cint_%7B0%7D%5E%7B16%7Dy%5Ccdot%20dy-%5Cpi%20%5Cint_%7B0%7D%5E%7B16%7D%5Ccfrac%7By%5E2%7D%7B16%7D%5Ccdot%20dy%5C%5C%5C%5C%5C%5C%5Cpi%20%5Ccdot%20%5Cleft.%20%5Ccfrac%7By%5E2%7D%7B2%7D%20%5Cright%5D_%7B0%7D%5E%7B16%7D-%5Cpi%20%5Ccdot%20%5Cleft.%20%5Ccfrac%7By%5E3%7D%7B48%7D%20%5Cright%5D_%7B0%7D%5E%7B16%7D%5Cimplies%20128%5Cpi%20-%5Ccfrac%7B256%5Cpi%20%7D%7B3%7D%5Cimplies%20%5Cboxed%7B%5Ccfrac%7B128%5Cpi%20%7D%7B3%7D%7D)