Answer:
The two polynomials are:
(x + 1) and (x² + x)
Step-by-step explanation:
A polynomial is simply an expression which consists of variables & coefficients involving only the operations of addition, subtraction, multiplication, and non - negative integer exponents of variables.
Now, 1 and x are both polynomials. Thus; 1/x is already a quotient of a polynomial.
Now, to get two polynomial expressions whose quotient, when simplified, is 1/x, we will just multiply the numerator and denominator by the same polynomial to get more quotients.
So,
Let's multiply both numerator and denominator by (x + 1) to get;
(x + 1)/(x(x + 1))
This gives; (x + 1)/(x² + x)
Now, 1 and x are both polynomials but the expression "1/x" is not a polynomial but a quotient and thus polynomials are not closed under division.
Now the aim of the above discussion is to internalize the mathematical relationships for open-end air columns in order to perform calculations predicting the length of air column required to produce a given natural frequency. And conversely, calculations can be performed to predict the natural frequencies produced by a known length of air column. Each of these calculations requires knowledge of the speed of a wave in air (which is approximately 340 m/s at room temperatures). The graphic below depicts the relationships between the key variables in such calculations. These relationships will be used to assist in the solution to problems involving standing waves in musical instruments.
Since the histogram is not symmetric, the grades shown in the math class below are not normally distributed.
<h3>When does a histogram represent a normal distribution?</h3>
A histogram represents a normal distribution if it symmetric.
In this problem, we have that:
- 57% of the grades are on the left tail.
- 25% of the grades are on the center.
- 18% are on the right tail.
Since the percentages at the tails are different, the histogram is not symmetric, and the grades shown in the math class below are not normally distributed.
More can be learned about the normal distribution at brainly.com/question/24537145
#SPJ1
3/4 I think, but it also depends on the order of the birth, so it could be 7/8 as well.