The scale factor that Thea uses to go from Rectangle Q to Rectangle R is equal to 6.
<h3>What is the scale factor from rectangle Q to rectangle R?</h3>
In geometry, the scale factor is a ratio of the resulting length to the initial length. Since the area of the square is equal to the square of its side length, then the scale factor is equal to:
k² = A' / A
k = √(A' / A)
Where:
- k - Scale factor
- A' - Area of the rectangle R.
- A - Area of the rectangle Q.
If we know that A = 2 and A' = 72, then the scale factor is:
k = √(72 / 2)
k = √36
k = 6
Then, the scale factor that Thea uses to go from Rectangle Q to Rectangle R is equal to 6.
To learn more on scale factors: brainly.com/question/22312172
#SPJ1
Answer:
95 / 100 * 120 = 114 students
Thank you and please rate me as brainliest as it will help me to level up
Answer:
6000.
Step-by-step explanation:
Hundreds digit is 6 so we round up the thousand digit (5) to get 6000.
By using the rules that the value inside square root can’t be negative and the denominator value can’t be zero, the domain for the given function is a) x<-1 and x>1 b) p≤1/2 c) s>-1.
I found the complete question on Chegg, here is the full question:
Write the restrictions that should be imposed on the variable for each of the following function. Then find, explicitly, the domain for each function and write it in the interval notation a) f(x)=(x-2)/(x-1) b) g(p)=√(1-2p) c) m(s)= (s^2+4s+4)/√(s+1)
Ans. We know that a number is not divisible by zero and number inside a square root can not be negative. In both the cases the outcome will be imaginary.
a) For this case the denominator x-1 can not be zero. So, x ≠1 and the domain is x<-1 and x>1.
b) For this case the value inside square root can’t be negative. So, p can’t be greater than 1/2 the domain is p≤1/2.
c) For this case also the value inside square root can’t be negative and the denominator value can’t be zero. So, s can’t equal or less than -1 and domain is s>-1.
Learn more about square root here:
brainly.com/question/3120622
#SPJ4
Answer:
ok
Step-by-step explanation: