<em>Hey</em><em>!</em><em>!</em>
<em>1</em><em> </em><em>and </em><em>2</em><em> </em><em>are</em><em> </em><em>vertical</em><em> </em><em>angles</em><em>.</em>
<em>Vertically</em><em> </em><em>opp</em><em>osite</em><em> </em><em>angles</em><em> </em><em>are</em><em> </em><em>always</em><em> </em><em>equal</em><em> </em><em>to</em><em> </em><em>each</em><em> </em><em>other</em><em>.</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>helps</em><em>.</em><em>.</em>
Hello Archanavrane75p56yu7
The answer to this problem would be 9 days for the second warehouse if 1.5 times than the first one.
:)
P.S (Dont cry)
6a. 1 - 2sin(x)² - 2cos(x)² = 1 - 2(sin(x)² +cos(x)²) = 1 - 2·1 = -1
6c. tan(x) + sin(x)/cos(x) = tan(x) + tan(x) = 2tan(x)
6e. 3sin(x) + tan(x)cos(x) = 3sin(x) + (sin(x)/cos(x))cos(x) = 3sin(x) +sin(x) = 4sin(x)
6g. 1 - cos(x)²tan(x)² = 1 - cos(x)²·(sin(x)²)/cos(x)²) = 1 -sin(x)² = cos(x)²