Answer:
x = 28 cm
Step-by-step explanation:
Given:
Area of link shaded regions = 84 cm²
Required:
The value of x (diameter of the semicircle/length of the rectangle)
Solution:
Diameter of the semicircle = 2r = x
Length of rectangle (L) = 2r = x
Radius of semicircle (r) = ½x
Width of rectangle (W) = radius of semicircle = ½x
Use 3.14 as π
Area of the link shaded regions = area of rectangle - area of semicircle
Thus:
Area of the link shaded regions = (L*W) - (½*πr²)
Plug in the values
84 = (x*½x) - (½*3.14*(½x)²)
84 = x²/2 - (1.57*x²/4)
84 = x²(½ - 1.57/4)
84 = x²(0.5 - 0.3925)
84 = x²(0.1075)
Divide both sides by 0.1075
84/0.1075 = x²
781.4 = x²
√781.4 = x
27.9535329 = x
x = 28 cm
425 is decreased to 319.
The above statement means that a number should be deducted from 425 to get the difference of 319.
Let x be the unknown number.
425 - x = 319
425 - 319 = x
106 = x
106 is the unknown number.
It can be phrased like this: 425 decreased by 106 is 319.
I don’t know dude I am sorry but I don’t know
Answer:
(2, 1)
Step-by-step explanation:
The best way to do this to avoid tedious fractions is to use the addition method (sometimes called the elimination method). We will work to eliminate one of the variables. Since the y values are smaller, let's work to get rid of those. That means we have to have a positive and a negative of the same number so they cancel each other out. We have a 2y and a 3y. The LCM of those numbers is 6, so we will multiply the first equation by a 3 and the second one by a 2. BUT they have to cancel out, so one of those multipliers will have to be negative. I made the 2 negative. Multiplying in the 3 and the -2:
3(-9x + 2y = -16)--> -27x + 6y = -48
-2(19x + 3y = 41)--> -38x - 6y = -82
Now you can see that the 6y and the -6y cancel each other out, leaving us to do the addition of what's left:
-65x = -130 so
x = 2
Now we will go back to either one of the original equations and sub in a 2 for x to solve for y:
19(2) + 3y = 41 so
38 + 3y = 41 and
3y = 3. Therefore,
y = 1
The solution set then is (2, 1)