Answer:63
Step-by-step explanation: H:0=18:12=1.5:1
1.5:1=63:42
Answer:
(a) the new angle the ladder makes with the ground is 
(b) the ladder slipped back about 5 meters
Step-by-step explanation:
Notice that the ladder doesn't change its length in the process.
So let's start from the initial situation , finding the distance from the ground at which the ladder touches the wall when the angle with the ground is 70^o. Notice that this situation is represented by a right angle triangle with the right angle between the wall and the ground (see attached image), and that we can use the sine function to find the side opposite to the 70 degree angle:

therefore 9.4 meters is approximately the height at which the ladder touches the wall initially.
Now, if the tip of the ladder goes down the wall 4 meters, it is now at 9.4 m - 4 m = 5.4 m from the ground. We can therefore use again the sine function to solve for the new angle:

To answer the second question we need to find the original distance from the wall that the bottom of the ladder was originally, and for that we can use the cosine function:

Now fro the new position of the bottom of the ladder relative to the wall:

then the difference in between those two distances is what we need:
8.4 m - 3.4 m = 5 m
Suppose
is another solution. Then

Substituting these derivatives into the ODE gives


Let
, so that

Then the ODE becomes

and we can condense the left hand side as a derivative of a product,
![\dfrac{\mathrm d}{\mathrm dx}[x^5u]=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Bx%5E5u%5D%3D0)
Integrate both sides with respect to
:
![\displaystyle\int\frac{\mathrm d}{\mathrm dx}[x^5u]\,\mathrm dx=C](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint%5Cfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Bx%5E5u%5D%5C%2C%5Cmathrm%20dx%3DC)

Solve for
:

Solve for
:

So another linearly independent solution is
.
<span>The probability, or expectation value for X in a block, equals the number of occurrences of X in all the blocks divided by the total number of blocks
</span>
well E(X)=µ
and
Var(X)=E[(X-µ)^2]
Answer:
Step-by-step explanation:
Given that a farmer finds there is a linear relationship between the number of bean stalks, n, she plants and the yield, y, each plant produces
When we consider this graph as a straight line, the two points lying on the line would be
(30, 30) and (34, 28) taking n as horizontal and y vertical
Using two point equation we find that
the equation of the line is

Substitute the points as x =n

is the linear relationship between n and y