Answer:
-139
Step-by-step explanation:
Evaluate 1/4 (4 x^3 - 2 y - 2 z^3) y^2 - 16 x^2 where x = 2, y = -5 and z = 3:
(4 x^3 - 2 y - 2 z^3)/4 y^2 - 16 x^2 = (4×2^3 - -5×2 - 2×3^3)/4×(-5)^2 - 16×2^2
(4×2^3 - 2 (-5) - 2×3^3)/4×(-5)^2 = ((4×2^3 - 2 (-5) - 2×3^3) (-5)^2)/4:
((4×2^3 - 2 (-5) - 2×3^3) (-5)^2)/4 - 16×2^2
(-5)^2 = 25:
((4×2^3 - 2 (-5) - 2×3^3) 25)/4 - 16×2^2
2^3 = 2×2^2:
((4×2×2^2 - 2 (-5) - 2×3^3) 25)/4 - 16×2^2
2^2 = 4:
((4×2×4 - 2 (-5) - 2×3^3) 25)/4 - 16×2^2
2×4 = 8:
((4×8 - 2 (-5) - 2×3^3) 25)/4 - 16×2^2
3^3 = 3×3^2:
((4×8 - 2 (-5) - 23×3^2) 25)/4 - 16×2^2
3^2 = 9:
((4×8 - 2 (-5) - 2×3×9) 25)/4 - 16×2^2
3×9 = 27:
((4×8 - 2 (-5) - 227) 25)/4 - 16×2^2
4×8 = 32:
((32 - 2 (-5) - 2×27) 25)/4 - 16×2^2
-2 (-5) = 10:
((32 + 10 - 2×27) 25)/4 - 16×2^2
-2×27 = -54:
((32 + 10 + -54) 25)/4 - 16×2^2
| 3 | 2
+ | 1 | 0
| 4 | 2:
(42 - 54 25)/4 - 16×2^2
42 - 54 = -(54 - 42):
(-(54 - 42) 25)/4 - 16×2^2
| 5 | 4
- | 4 | 2
| 1 | 2:
(-12×25)/4 - 16×2^2
(-12)/4 = (4 (-3))/4 = -3:
-3×25 - 16×2^2
2^2 = 4:
-3×25 - 164
-3×25 = -75:
-75 - 16×4
-16×4 = -64:
-64 - 75
-75 - 64 = -(75 + 64):
-(75 + 64)
| 7 | 5
+ | 6 | 4
1 | 3 | 9:
Answer: -139
Answer:
What is the question? Can you show more info or show anything they gave you?
Step-by-step explanation:
Answer:
Answer is 4
Step-by-step explanation:

<em>HAVE A NICE DAY</em><em>!</em>
<em>THANKS FOR GIVING ME THE OPPORTUNITY</em><em> </em><em>TO ANSWER YOUR QUESTION</em><em>. </em>
_ * 5 > 5
3/3 is equal to 1 which would make them equal to each other.
2/3 is less than one which means it would make the number on the left less than 5, not greater than.
the answer is 5/3 because it is bigger than the other answer choices and will result in a greater number than that on the right.
Answer:If a die is rolled once, determine the probability of rolling a 4: Rolling a 4 is an event with 1 favorable outcome (a roll of 4) and the total number of possible outcomes is 6 (a roll of 1, 2, 3, 4, 5, or 6). Thus, the probability of rolling a 4 is 1/6.
If a die is rolled once, determine the probability of rolling at least a 4: Rolling at least 4 is an event with 3 favorable outcomes (a roll of 4, 5, or 6) and the total number of possible outcomes is again 6. Thus, the probability of rolling at least a 4 is 3/6 = 1/2
Step-by-step explanation:For example, when a die is rolled, the possible outcomes are 1, 2, 3, 4, 5, and 6. In mathematical language, an event is a set of outcomes, which describe what outcomes correspond to the "event" happening. For instance, "rolling an even number" is an event that corresponds to the set of outcomes {2, 4, 6}. The probability of an event, like rolling an even number, is the number of outcomes that constitute the event divided by the total number of possible outcomes. We call the outcomes in an event its "favorable outcomes".