Using derivatives, it is found that the best estimate of f '(2) based on this table of values is of 10.
The rate of change <u>from x = 0 to x = 2</u> is given by:
![r_1 = \frac{2 - (-16)}{2 - 0} = \frac{18}{2} = 9](https://tex.z-dn.net/?f=r_1%20%3D%20%5Cfrac%7B2%20-%20%28-16%29%7D%7B2%20-%200%7D%20%3D%20%5Cfrac%7B18%7D%7B2%7D%20%3D%209)
From <u>x = 2 to x = 4</u>, it is given by:
![r_2 = \frac{24 - 2}{4 - 2} = \frac{22}{2} = 11](https://tex.z-dn.net/?f=r_2%20%3D%20%5Cfrac%7B24%20-%202%7D%7B4%20-%202%7D%20%3D%20%5Cfrac%7B22%7D%7B2%7D%20%3D%2011)
The average of these rates is:
![A = \frac{r_1 + r_2}{2} = \frac{9 + 11}{2} = 10](https://tex.z-dn.net/?f=A%20%3D%20%5Cfrac%7Br_1%20%2B%20r_2%7D%7B2%7D%20%3D%20%5Cfrac%7B9%20%2B%2011%7D%7B2%7D%20%3D%2010)
Hence, the best estimate of f '(2) based on this table of values is of 10.
To learn more about derivatives, brainly.com/question/18590720