1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wolverine [178]
2 years ago
7

%20%5Ctan%20%5Ctheta%20%2B%20%5Csec%20%5Ctheta%20-%201%20%7D%20%7B%20%5Ctan%20%5Ctheta%20-%20%5Csec%20%5Ctheta%20%2B%201%20%7D%20%3D%20%5Cfrac%20%7B%201%20%2B%20%5Csin%20%5Ctheta%20%7D%20%7B%20%5Ccos%20%5Ctheta%20%7D" id="TexFormula1" title="prove that\ \textless \ br /\ \textgreater \ \frac { \tan \theta + \sec \theta - 1 } { \tan \theta - \sec \theta + 1 } = \frac { 1 + \sin \theta } { \cos \theta }" alt="prove that\ \textless \ br /\ \textgreater \ \frac { \tan \theta + \sec \theta - 1 } { \tan \theta - \sec \theta + 1 } = \frac { 1 + \sin \theta } { \cos \theta }" align="absmiddle" class="latex-formula">
pls i want the answwr as fast u can
ASAP !


MisterBrainly Answer Please :((((
0r any top user
who will answer correctly he will be a good user
plz answer​
Mathematics
1 answer:
inysia [295]2 years ago
5 0

\large \bigstar \frak{ } \large\underline{\sf{Solution-}}

Consider, LHS

\begin{gathered}\rm \: \dfrac { \tan \theta + \sec \theta - 1 } { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

We know,

\begin{gathered}\boxed{\sf{  \:\rm \: {sec}^{2}x - {tan}^{2}x = 1 \: \: }} \\ \end{gathered}  \\  \\  \text{So, using this identity, we get} \\  \\ \begin{gathered}\rm \: = \:\dfrac { \tan \theta + \sec \theta - ( {sec}^{2}\theta - {tan}^{2}\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

We know,

\begin{gathered}\boxed{\sf{  \:\rm \: {x}^{2} - {y}^{2} = (x + y)(x - y) \: \: }} \\ \end{gathered}  \\

So, using this identity, we get

\begin{gathered}\rm \: = \:\dfrac { \tan \theta + \sec \theta - (sec\theta + tan\theta )(sec\theta - tan\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

can be rewritten as

\begin{gathered}\rm\:=\:\dfrac {(\sec \theta + tan\theta ) - (sec\theta + tan\theta )(sec\theta -tan\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac {(\sec \theta + tan\theta ) \: \cancel{(1 - sec\theta + tan\theta )}} { \cancel{ \tan \theta - \sec \theta + 1} } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:sec\theta + tan\theta \\\end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac{1}{cos\theta } + \dfrac{sin\theta }{cos\theta } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac{1 + sin\theta }{cos\theta } \\ \end{gathered}

<h2>Hence,</h2>

\begin{gathered} \\ \rm\implies \:\boxed{\sf{  \:\rm \: \dfrac { \tan \theta + \sec \theta - 1 } { \tan \theta - \sec \theta + 1 } = \:\dfrac{1 + sin\theta }{cos\theta } \: \: }} \\ \\ \end{gathered}

\rule{190pt}{2pt}

You might be interested in
If x=-2,y=3,t=2 then x/y^t​
hjlf

Answer:

0.2

Step-by-step explanation:

y^t=3^2=9

x/y^t=2/9=0.2

6 0
2 years ago
Rodrigo traveled at an average speed of 55 miles per hour for 5 hours to get from one national park to the next on his vacation.
creativ13 [48]
275 miles to the next park
3 0
3 years ago
Read 2 more answers
HELP PLEASE HELP!!!!!
bagirrra123 [75]

(i): A triangle where all three sides are equal and the same.

(ii): A triangle where all three sides are unequal in length.

(iii): A triangle that has two sides of equal length.

(iv): A triangle where all three internal angles are acute(they measure less than 90 degrees.

(v): A triangle where all three internal angles are obtuse(measure above 90 degrees).

(vi): A triangle where one internal angle is a right angle(90 degrees).

Hope this helps

3 0
2 years ago
Read 2 more answers
Solve for x radical forms
vova2212 [387]

Answer:

in right angled triangle ABC

by using Pythagoras law

h²=p²+b²

x²=7²+10²

x=√149=12.21cm

8 0
3 years ago
Answer this question please and thank you
ELEN [110]

Answer:

x = -11

-11-3=-14

-14/7=-2

7 0
3 years ago
Other questions:
  • S= 2pier^2 + 2pierh , solve for h
    6·1 answer
  • Solve this, please prove it with steps in detail
    14·1 answer
  • Stan's heart rate, in beats per minute, was measured 20 times at random. The results are 82, 84, 98, 112, 97, 93, 91, 87, 112, 8
    6·1 answer
  • I need help please!!!!???
    12·1 answer
  • a jar contains 8 nickels, 10 dimes, 6 quarters, and 22 pennies. a coin is chosen randomly from a jar, what is the probability th
    11·2 answers
  • Which number sentence is not true?
    10·1 answer
  • Consider the derivation of the quadratic formula below. What is the missing radicand in Step 6?
    14·1 answer
  • Given the points (-4, 13) and (6,-2) find the slope in simplest form?
    7·2 answers
  • Solve using elimination 2x-y=-22 and -7x+y=67 <br> (9,4)<br> (-9,-4)<br> (-4,9)<br> (-9,4)
    9·1 answer
  • 2-6² +4 2<br><br>please help it's review for my finals ​
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!