1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wolverine [178]
3 years ago
7

%20%5Ctan%20%5Ctheta%20%2B%20%5Csec%20%5Ctheta%20-%201%20%7D%20%7B%20%5Ctan%20%5Ctheta%20-%20%5Csec%20%5Ctheta%20%2B%201%20%7D%20%3D%20%5Cfrac%20%7B%201%20%2B%20%5Csin%20%5Ctheta%20%7D%20%7B%20%5Ccos%20%5Ctheta%20%7D" id="TexFormula1" title="prove that\ \textless \ br /\ \textgreater \ \frac { \tan \theta + \sec \theta - 1 } { \tan \theta - \sec \theta + 1 } = \frac { 1 + \sin \theta } { \cos \theta }" alt="prove that\ \textless \ br /\ \textgreater \ \frac { \tan \theta + \sec \theta - 1 } { \tan \theta - \sec \theta + 1 } = \frac { 1 + \sin \theta } { \cos \theta }" align="absmiddle" class="latex-formula">
pls i want the answwr as fast u can
ASAP !


MisterBrainly Answer Please :((((
0r any top user
who will answer correctly he will be a good user
plz answer​
Mathematics
1 answer:
inysia [295]3 years ago
5 0

\large \bigstar \frak{ } \large\underline{\sf{Solution-}}

Consider, LHS

\begin{gathered}\rm \: \dfrac { \tan \theta + \sec \theta - 1 } { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

We know,

\begin{gathered}\boxed{\sf{  \:\rm \: {sec}^{2}x - {tan}^{2}x = 1 \: \: }} \\ \end{gathered}  \\  \\  \text{So, using this identity, we get} \\  \\ \begin{gathered}\rm \: = \:\dfrac { \tan \theta + \sec \theta - ( {sec}^{2}\theta - {tan}^{2}\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

We know,

\begin{gathered}\boxed{\sf{  \:\rm \: {x}^{2} - {y}^{2} = (x + y)(x - y) \: \: }} \\ \end{gathered}  \\

So, using this identity, we get

\begin{gathered}\rm \: = \:\dfrac { \tan \theta + \sec \theta - (sec\theta + tan\theta )(sec\theta - tan\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

can be rewritten as

\begin{gathered}\rm\:=\:\dfrac {(\sec \theta + tan\theta ) - (sec\theta + tan\theta )(sec\theta -tan\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac {(\sec \theta + tan\theta ) \: \cancel{(1 - sec\theta + tan\theta )}} { \cancel{ \tan \theta - \sec \theta + 1} } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:sec\theta + tan\theta \\\end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac{1}{cos\theta } + \dfrac{sin\theta }{cos\theta } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac{1 + sin\theta }{cos\theta } \\ \end{gathered}

<h2>Hence,</h2>

\begin{gathered} \\ \rm\implies \:\boxed{\sf{  \:\rm \: \dfrac { \tan \theta + \sec \theta - 1 } { \tan \theta - \sec \theta + 1 } = \:\dfrac{1 + sin\theta }{cos\theta } \: \: }} \\ \\ \end{gathered}

\rule{190pt}{2pt}

You might be interested in
What is 737 rounded to the nearest hundred
valentinak56 [21]
737 rounded to the nearest hundred is 700, because 37 is smaller than 50, if the number was 768, it would be 800.
5 0
3 years ago
John grew 36 plants with 12 seed packets. With 15 seed packets, how many total plants can John have in his backyard?
tigry1 [53]

Answer: he can have 45 plants

8 0
2 years ago
When 2(3/5x+2 3/4y-1/4x-1 1/2y+3) is simplified, what is the resulting expression?
erik [133]

Answer:

Option B is correct.

Step-by-step explanation:

2(\frac{3}{5}x+ 2\frac{3}{4}y-\frac{1}{4}x-1\frac{1}{2}y+3)

We need to solve the above expression.

First Convert Mix fraction into improper fraction

2(\frac{3}{5}x+ 2\frac{3}{4}y-\frac{1}{4}x-1\frac{1}{2}y+3)\\=2(\frac{3}{5}x+ \frac{11}{4}y-\frac{1}{4}x-\frac{3}{2}y+3)

Combining the like terms

=2(\frac{3}{5}x-\frac{1}{4}x+ \frac{11}{4}y-\frac{3}{2}y+3)

Solving like terms

=2(\frac{3x*4-5x}{20}+ \frac{11y-3y*2}{4}+3)\\=2(\frac{12x-5x}{20}+ \frac{11y-6y}{4}+3)\\=2(\frac{7x}{20}+ \frac{5y}{4}+3)

Multiply each term with 2

=2*\frac{7x}{20}+ 2*\frac{5y}{4}+2*3\\=\frac{7x}{10}+ \frac{5y}{2}+6

=\frac{7x}{10}+ 2\frac{1}{2}y+6

So, Option B is correct.

4 0
3 years ago
yahir has 1/2 gallon of milk in a container. He pours 1/16 gallon in a mixing bowl. What fraction of a gallon does yahir have le
fgiga [73]
I made the denominators the same 
8/16=1/2
I subtracted 1/16 from 8/16
8/16 - 1/16+ 7/16
Yahir has 7/16 of a gallon of milk left
4 0
3 years ago
Read 2 more answers
How do you solve y=x-3 and<br> Y= -x +5
artcher [175]

Answer:

The answer is 4

Step-by-step explanation:

Set them equal so it would be X-3= -X+5 then add the negative X to get

2x-3=5 then add the -3 to 5 and get

2x=8 then divide 2 from both sides to get

x=4

5 0
4 years ago
Other questions:
  • find the area of the figure. NOTE: in this problem, change 15ft into yards before finding the area. 3 feet = 1 yard ​
    12·1 answer
  • find the interval of the equation which function f is concave up or down locate inflection point f(x)=(x+2)^3​
    10·1 answer
  • What is 3x=15? If anybody knows
    14·2 answers
  • I NEED HELP ASAP!!!]
    7·1 answer
  • Solve for x 1/4(32x-16)=6x
    7·1 answer
  • Express x^2-8x in the form (x-a)^2-b where a and b are integers
    6·1 answer
  • What is the length of the hypotenuse?
    6·2 answers
  • Find the value of x,if the distance between p(5,2) and Q(x,-2)be 5 units.​
    8·2 answers
  • I will give brainiest if random will report please include the expression in answer
    5·2 answers
  • Photo above, please give me some encouragement :(
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!