Replace <span><span>f<span>(x)</span></span><span>f<span>(x)</span></span></span> with <span>yy</span>.<span><span>y=3x−6</span><span>y=3x-6</span></span>Interchange the variables.<span><span>x=3y−6</span><span>x=3y-6</span></span>Solve for <span>yy</span>..<span><span>y=2+<span>x3</span></span><span>y=2+<span>x3</span></span></span>Solve for <span>yy</span> and replace with <span><span><span>f<span>−1</span></span><span>(x)</span></span><span><span>f<span>-1</span></span><span>(x)</span></span></span>.
<span><span>f<span>−1</span></span><span>(x)</span>=2+<span><span>x3</span></span></span>
Answer: C
Step-by-step explanation:
(fog)(3) is the same as finding f(g(3)). To solve, we first need to solve g(3). then, we solve for f(g(3)).
g(3)=5(3) [multiply]
g(3)=15
Now, we plug in 15 into f(x).
f(g(3))=-2(15)+8 [multiply]
f(g(3))=-30+8 [add]
f(g(3))=-22
Now, we know that C is the correct answer.
let's first off notice that, on the 2), the sector is really half of the whole circle, and on 3) the sector is one quarter of the whole circle.
now, on 2) AB is the diameter of 4 units, therefore it has a radius of 2, or half that.
![\bf \boxed{2} \\\\\\ \stackrel{\textit{area of a circle}}{A=\pi r^2}~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=2 \end{cases}\implies A=\pi 2^2\implies A=4\pi \\\\\\ \stackrel{\textit{half of that}}{A=2\pi}\implies A=\stackrel{\textit{rounded up}}{A=6.3~ft^2} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cboxed%7B2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Barea%20of%20a%20circle%7D%7D%7BA%3D%5Cpi%20r%5E2%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D2%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Cpi%202%5E2%5Cimplies%20A%3D4%5Cpi%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bhalf%20of%20that%7D%7D%7BA%3D2%5Cpi%7D%5Cimplies%20A%3D%5Cstackrel%7B%5Ctextit%7Brounded%20up%7D%7D%7BA%3D6.3~ft%5E2%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \boxed{3} \\\\\\ \stackrel{\textit{area of a circle}}{A=\pi r^2}~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=20 \end{cases}\implies A=\pi 20^2\implies A=400\pi \\\\\\ \stackrel{\textit{one quarter of that}}{A=100\pi }\implies \stackrel{\textit{rounded up}}{A=314.2~in^2}](https://tex.z-dn.net/?f=%5Cbf%20%5Cboxed%7B3%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Barea%20of%20a%20circle%7D%7D%7BA%3D%5Cpi%20r%5E2%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D20%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Cpi%2020%5E2%5Cimplies%20A%3D400%5Cpi%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bone%20quarter%20of%20that%7D%7D%7BA%3D100%5Cpi%20%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Brounded%20up%7D%7D%7BA%3D314.2~in%5E2%7D)
Part A:
A). Equilateral Isosceles
B). Right isosceles
C). Obtuse scalene
Part B:
F and E
Plz mark me brainliest
The distance between A and B is unknown because you didn't put an equation.