Answer:
You he length of the rectangle is:
155 cm
Answer:

Step-by-step explanation:
The motion equations that describe the ball are, respectively:
![x = \left[\left(152\,\frac{ft}{s} \right)\cdot \cos 52^{\circ} \right] \cdot t](https://tex.z-dn.net/?f=x%20%3D%20%5Cleft%5B%5Cleft%28152%5C%2C%5Cfrac%7Bft%7D%7Bs%7D%20%5Cright%29%5Ccdot%20%5Ccos%2052%5E%7B%5Ccirc%7D%20%5Cright%5D%20%5Ccdot%20t)
![y = 4.5\,ft + \left[\left(152\,\frac{ft}{s} \right)\cdot \sin 52^{\circ} \right] \cdot t - \frac{1}{2}\cdot \left(32.174\,\frac{ft}{s^{2}} \right) \cdot t^{2}](https://tex.z-dn.net/?f=y%20%3D%204.5%5C%2Cft%20%2B%20%5Cleft%5B%5Cleft%28152%5C%2C%5Cfrac%7Bft%7D%7Bs%7D%20%5Cright%29%5Ccdot%20%5Csin%2052%5E%7B%5Ccirc%7D%20%5Cright%5D%20%5Ccdot%20t%20-%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%5Cleft%2832.174%5C%2C%5Cfrac%7Bft%7D%7Bs%5E%7B2%7D%7D%20%5Cright%29%20%5Ccdot%20t%5E%7B2%7D)
The time required for the ball to hit the ground is computed from the second equation. That is to say:
![4.5\,ft + \left[\left(152\,\frac{ft}{s} \right)\cdot \sin 52^{\circ} \right] \cdot t - \frac{1}{2}\cdot \left(32.174\,\frac{m}{s^{2}} \right) \cdot t^{2} = 0](https://tex.z-dn.net/?f=4.5%5C%2Cft%20%2B%20%5Cleft%5B%5Cleft%28152%5C%2C%5Cfrac%7Bft%7D%7Bs%7D%20%5Cright%29%5Ccdot%20%5Csin%2052%5E%7B%5Ccirc%7D%20%5Cright%5D%20%5Ccdot%20t%20-%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%5Cleft%2832.174%5C%2C%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D%20%5Cright%29%20%5Ccdot%20t%5E%7B2%7D%20%3D%200)
Given that formula is a second-order polynomial, the roots of the equation are described below:
and 
Just the first root offers a realistic solution. Then,
.
Answer:
A kite with a 100 foot-long string is caught in a tree. When the full length of the string is stretched in a straight line to the ground, it touches the ground a distance of 30 feet from the bottom of the tree. Find the measure of the angle between the kite string and the ground.
17°
27°
63°
73°
Step-by-step explanation:
Answer:
f(x) = -3(x+3)(x-1)
Step-by-step explanation:
x = -3 & 1; f(x) = 9
f(x) = a(x-r1)(x-r2)
f(0) = a(x-r1)(x-r2) = 9; 9 = a(0-(-3))(0-1)
9 = a(3)(-1); 9 = a(-3)
a = -3
f(x) = -3(x+3)(x-1)
Answer:
388.5yd²
Step-by-step explanation:
We have Triangle TUV
In the question, we are given already
Angle U = 32°
Angle T = 38°
Angle V = ???
Side t = 31yd
Side u = ?
Side v = ?
Area of the triangle= ?
Step 1
We find the third angle = Angle V
Sum of angles in a triangle = 180°
Third angle = Angle V = 180° - (32 + 38)°
= 180° - 70°
Angle V = 110°
Step 2
Find the sides u and v
We find these sides using the sine rule
Sine rule or Rule of Sines =
a/ sin A = b/ Sin B
Hence for triangle TUV
t/ sin T = u/ sin U = v/ sin V
We have the following values
Angle T = 38°
Angle U = 32°
Angle V = 110°
We are given side t = 31y
Finding side u
u/ sin U= t/ sin T
u/sin 32 = 31/sin 38
Cross Multiply
sin 32 × 31 = u × sin 38
u = sin 32 × 31/sin 38
u = 26.68268yd
u = 26.68yd
Finding side x
v / sin V= t/ sin T
v/ sin 110 = 31/sin 38
Cross Multiply
sin 110 × 31 = v × sin 38
v = sin 110 × 31/sin 38
v = 47.31573yd
v = 47.32yd
To find the area of triangle TUV
We use heron formula
= √s(s - t) (s - u) (s - v)
Where S = t + u + v/ 2
s = (31 + 26.68 + 47.32)/2
s = 52.5
Area of the triangle = √52.5× (52.5 - 31) × (52.5 - 26.68 ) × (52.5 - 47.32)
Area of the triangle = √150967.6032
Area of the triangle = 388.5454973359yd²
Approximately to the nearest tenth =388.5yd²