Answer:
a
Step-by-step explanation:
Answer:
Helppppppp Neeeeeeeeded asapppppp
Step-by-step explanation:
3 by 10kg? ioooooooooooooo
<h2>
Answer:</h2>

<h2>
Step-by-step explanation:</h2>
As the question states,
John's brother has Galactosemia which states that his parents were both the carriers.
Therefore, the chances for the John to have the disease is = 2/3
Now,
Martha's great-grandmother also had the disease that means her children definitely carried the disease means probability of 1.
Now, one of those children married with a person.
So,
Probability for the child to have disease will be = 1/2
Now, again the child's child (Martha) probability for having the disease is = 1/2.
Therefore,
<u>The total probability for Martha's first child to be diagnosed with Galactosemia will be,</u>

(Here, we assumed that the child has the disease therefore, the probability was taken to be = 1/4.)
<em><u>Hence, the probability for the first child to have Galactosemia is
</u></em>
The question might have some mistake since there are 2 multiplier of t. I found a similar question as follows:
The population P(t) of a culture of bacteria is given by P(t) = –1710t^2+ 92,000t + 10,000, where t is the time in hours since the culture was started. Determine the time at which the population is at a maximum. Round to the nearest hour.
Answer:
27 hours
Step-by-step explanation:
Equation of population P(t) = –1710t^2+ 92,000t + 10,000
Find the derivative of the function to find the critical value
dP/dt = -2(1710)t + 92000
= -3420t + 92000
Find the critical value by equating dP/dt = 0
-3420t + 92000 = 0
92000 = 3420t
t = 92000/3420 = 26.90
Check if it really have max value through 2nd derivative
d(dP)/dt^2 = -3420
2nd derivative is negative, hence it has maximum value
So, the time when it is maximum is 26.9 or 27 hours