1/2(4y+7)
Use the distributive property. a(b+c)= ab+ac
1/2*4y= 2y
1/2*7= 3.5
2y+3.5 <---- simplified expression
I hope this helps!
~kaikers
Let us bear in mind the equivalent value of these coins:
One dime = $0.10
One quarter = $0.25
Let x = number of dimes
y<span> = number of quarters</span>
Since the boy has 70 coins in total, we can say that:
<span>x + y = </span><span>70 </span>(can be written as x = 70 – y)
Since the boy has a total of $12.40, we can say that:
0.10x + 0.25y = 12.40
To solve this problem, we need to solve this system of equation. We have to substitute the value of x as written in the first equation (x = 70 –y)
0.10(70 – y) + 0.25y = 12.40
7 – 0.10y + 0.25y = 12.40
0.15y = 5.40
y = 36
X = 70 – 36
X = 34
Therefore,<span> the boys </span>has<span> 34 dimes and 36 quarters. To check our answer, we just have to check if his money would total $12.40.</span>
34 dimes = $3.40
36 dimes = $9.00
<span>Total </span><span>$12.40</span>
Answer:

Step-by-step explanation:
<u>Fundamental Theorem of Calculus</u>

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.
Given indefinite integral:


If the terms are multiplied by constants, take them outside the integral:

Multiply by the conjugate of 1 - sin(6x) :






Expand:






![\implies 12 \left[\dfrac{1}{6} \tan (6x)+\dfrac{1}{6} \sec (6x) \right]+\text{C}](https://tex.z-dn.net/?f=%5Cimplies%2012%20%5Cleft%5B%5Cdfrac%7B1%7D%7B6%7D%20%5Ctan%20%286x%29%2B%5Cdfrac%7B1%7D%7B6%7D%20%5Csec%20%286x%29%20%5Cright%5D%2B%5Ctext%7BC%7D)
Simplify:


Learn more about indefinite integration here:
brainly.com/question/27805589
brainly.com/question/28155016
Step-by-step explanation:
if you calculate both of you should ask her
Answer: option a.

Explanation:
A <em>shrink</em> of a function is a <em>shrink</em> on the vertical direction. It means that for a certain value of x, the new function will have a lower value, in the intervals where the function is positive, or a higher value, in those intervals where the function is negative. This is, the image of the new function is shortened in the vertical direction.
That is the reason behind the rule:
- given f(x), the graph of the function a×f(x), when a > 1, represents a vertical stretch of f(x),
- given f(x), the graph of the function a×f(x), when a < 1, represents a vertical shrink of f(x).
So, we just must apply the rule: to find a shrink of an exponential growth function, multiply the original function by a scale factor less than 1.
Since it <em>is a shrink of</em> <em>an exponential growth function</em>, the base must be greater than 1. Among the options, the functions that meet that conditon are a and b:

Now, following the rule it is the function with the fraction (1/3) in front of the exponential part which represents a <em>shrink of an exponential function</em>.