Answer:
P'(4, 9)
Step-by-step explanation:
Add the translation vector to the point:
P' = P +(6, 5) = (-2, 4) +(6, 5) = (-2+6, 4+5)
P' = (4, 9)
Answer:
8
Step-by-step explanation:
5V-6W
V=4. W=2.
5(4)-6(2)
20-6(2)
20-12=
8
105 x 0.08 and what you get is your answer
Answer:
(a)
(b)
(c)
(d)
(e)
(f)
Step-by-step explanation:
Let as consider the given equations are
.
(a)


![[\because \log_aa^x=x]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Clog_aa%5Ex%3Dx%5D)
(b)
![[\because \log_aa^x=x]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Clog_aa%5Ex%3Dx%5D)
(c)


![[\because \log_aa^x=x]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Clog_aa%5Ex%3Dx%5D)
(d)

![[\because \log_aa^x=x]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Clog_aa%5Ex%3Dx%5D)
(e)


![[\because \log_aa^x=x]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Clog_aa%5Ex%3Dx%5D)
(f)


![[\because \log10^x=x]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Clog10%5Ex%3Dx%5D)
<span>Answer:
Its too long to write here, so I will just state what I did.
I let P=(2ap,ap^2) and Q=(2aq,aq^2)
But x-coordinates of P and Q differ by (2a)
So P=(2ap,ap^2) BUT Q=(2ap - 2a, aq^2)
So Q=(2a(p-1), aq^2)
which means, 2aq = 2a(p-1)
therefore, q=p-1
then I subbed that value of q in aq^2
so Q=(2a(p-1), a(p-1)^2)
and P=(2ap,ap^2)
Using these two values, I found the midpoint which was:
M=( a(2p-1), [a(2p^2 - 2p + 1)]/2 )
then x = a(2p-1)
rearranging to make p the subject
p= (x+a)/2a</span>