To solve problem 19, we must remember the order of operations. PEMDAS tells us that we should simplify numbers in parentheses first, exponents next, multiplication and division after that, and finally addition and subtraction. Using this knowledge, we can begin to simplify the problem by working out the innermost set of parentheses:
36 / [10 - (3-1)²]
36 / [10 - (2)²]
Next, we should still simplify what is inside the parentheses but continue to solve the exponents (the next letter in PEMDAS).
36/ (10-4)
After that, we should compute the subtraction that is inside the parentheses.
36/6
Finally, we can solve using division.
6
Now, we can move onto problem 20:
1/4(16d - 24)
To solve this problem, we need to use the distributive property, which allows us to distribute the coefficient of 1/4 through the parentheses by multiplying each term by 1/4.
1/4 (16d-24)
1/4(16d) - 1/4(24)
Next, we can simplify further by using multiplication.
4d - 6
Therefore, your answer to problem 19 is 6 and the answer to problem 20 is 4d -6.
Hope this helps!
Answer:
Step-by-step explanation:
|x-2|>5
x-2<-5
x<-3
or x-2>5
x>7
Answer:
<u>Perimeter</u>:
= 58 m (approximate)
= 58.2066 or 58.21 m (exact)
<u>Area:</u>
= 208 m² (approximate)
= 210.0006 or 210 m² (exact)
Step-by-step explanation:
Given the following dimensions of a rectangle:
length (L) =
meters
width (W) =
meters
The formula for solving the perimeter of a rectangle is:
P = 2(L + W) or 2L + 2W
The formula for solving the area of a rectangle is:
A = L × W
<h2>Approximate Forms:</h2>
In order to determine the approximate perimeter, we must determine the perfect square that is close to the given dimensions.
13² = 169
14² = 196
15² = 225
16² = 256
Among the perfect squares provided, 16² = 256 is close to 252 (inside the given radical for the length), and 13² = 169 (inside the given radical for the width). We can use these values to approximate the perimeter and the area of the rectangle.
P = 2(L + W)
P = 2(13 + 16)
P = 58 m (approximate)
A = L × W
A = 13 × 16
A = 208 m² (approximate)
<h2>Exact Forms:</h2>
L =
meters = 15.8745 meters
W =
meters = 13.2288 meters
P = 2(L + W)
P = 2(15.8745 + 13.2288)
P = 2(29.1033)
P = 58.2066 or 58.21 m
A = L × W
A = 15.8745 × 13.2288
A = 210.0006 or 210 m²
Answer:
9
It is 9 because 9 is the only number that multiplied by itself is 81.