1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dmitriy555 [2]
2 years ago
10

The diagonal of a square is 8 cm.

Mathematics
2 answers:
VladimirAG [237]2 years ago
6 0

the length of the side of this square is 4\sqrt{2} \:or \:5.65cm

Answer:

Solutions Given:

let diagonal of square be AC: 8 cm

let each side be a.

As diagonal bisect square.

let it forms right angled triangle ABC .

Where diagonal AC is hypotenuse and a is their opposite side and base.

By using Pythagoras law

hypotenuse ²=opposite side²+base side²

8²=a²+a²

64=2a²

a²=\frac{64}{2}

a²=32

doing square root on both side

\sqrt{a²}=\sqrt{32}

a=±\sqrt{2*2*2*2*2}

a=±2*2\sqrt{2}

Since side of square is always positive so

a=4\sqrt{2} or 5.65 cm

Komok [63]2 years ago
5 0

Answer:

<u>Given</u> :

↠ The diagonal of a square is 8 cm.

<u>To</u><u> </u><u>Find</u> :

↠ The length of the side of square.

<u>Using Formula</u> :

Here is the formula to find the side of square if diagonal is given :

\implies{\sf{a =  \sqrt{2}  \dfrac{d}{2}}}

Where :

  • ➺ a = side of square
  • ➺ d = diagonal of square

<u>Solution</u> :

Substituting the given value in the required formula :

{\dashrightarrow{\pmb{\sf{ \: a =  \sqrt{2}  \dfrac{d}{2}}}}}

{\dashrightarrow{\sf{ \: a =  \sqrt{2}   \times \dfrac{8}{2}}}}

{\dashrightarrow{\sf{ \: a =  \sqrt{2}   \times \cancel{\dfrac{8}{2}}}}}

{\dashrightarrow{\sf{ \: a =  \sqrt{2}   \times 4}}}

{\dashrightarrow{\sf{ \: a = 4\sqrt{2}}}}

{\dashrightarrow{\sf{\underline{\underline{\red{ \: a = 5.65 \: cm}}}}}}

Hence, the length of the side of square is 5.6 cm.

\underline{\rule{220pt}{3pt}}

You might be interested in
The College Board SAT college entrance exam consists of three parts: math, writing and critical reading (The World Almanac 2012)
Wittaler [7]

Answer:

Yes, there is a difference between the population mean for the math scores and the population mean for the writing scores.

Test Statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1 .

Step-by-step explanation:

We are provided with the sample data showing the math and writing scores for a sample of twelve students who took the SAT ;

Let A = Math Scores ,B = Writing Scores  and D = difference between both

So, \mu_A = Population mean for the math scores

       \mu_B = Population mean for the writing scores

 Let \mu_D = Difference between the population mean for the math scores and the population mean for the writing scores.

            <em>  Null Hypothesis, </em>H_0<em> : </em>\mu_A = \mu_B<em>     or   </em>\mu_D<em> = 0 </em>

<em>      Alternate Hypothesis, </em>H_1<em> : </em>\mu_A \neq  \mu_B<em>      or   </em>\mu_D \neq<em> 0</em>

Hence, Test Statistics used here will be;

            \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1    where, Dbar = Bbar - Abar

                                                               s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}}

                                                               n = 12

Student        Math scores (A)          Writing scores (B)         D = B - A

     1                      540                            474                                   -66

     2                      432                           380                                    -52  

     3                      528                           463                                    -65

     4                       574                          612                                      38

     5                       448                          420                                    -28

     6                       502                          526                                    24

     7                       480                           430                                     -50

     8                       499                           459                                   -40

     9                       610                            615                                       5

     10                      572                           541                                      -31

     11                       390                           335                                     -55

     12                      593                           613                                       20  

Now Dbar = Bbar - Abar = 489 - 514 = -25

 Bbar = \frac{\sum B_i}{n} = \frac{474+380+463+612+420+526+430+459+615+541+335+613}{12}  = 489

 Abar =  \frac{\sum A_i}{n} = \frac{540+432+528+574+448+502+480+499+610+572+390+593}{12} = 514

 ∑D_i^{2} = 22600     and  s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}} = \sqrt{\frac{22600 - 12*(-25)^{2} }{12-1} } = 37.05

So, Test statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1

                            = \frac{-25 - 0}{\frac{37.05}{\sqrt{12} } } follows t_1_1   = -2.34

<em>Now at 5% level of significance our t table is giving critical values of -2.201 and 2.201 for two tail test. Since our test statistics doesn't fall between these two values as it is less than -2.201 so we have sufficient evidence to reject null hypothesis as our test statistics fall in the rejection region .</em>

Therefore, we conclude that there is a difference between the population mean for the math scores and the population mean for the writing scores.

8 0
3 years ago
A group of students is arranging squares into layers to create a project. The first layer has 4 squares. The second layer has 8
stealth61 [152]

Answer:

f(1) = 4; f(n) = 4 + d(n - 1), n > 0.

Step-by-step explanation:

This arithmetic sequence has a common difference of d with first term = 4.

f(1) = 4; f(n) = 4 + d(n - 1), n > 0.

8 0
2 years ago
What is the constant of variation if y varies inversely as x and y = 3 when x = 6? PLZ HELP ME I DONT UNDERSTAND
mojhsa [17]

Answer:

k = 18

Step-by-step explanation:

Given that y varies inversely as x then the equation relating them is

y = \frac{k}{x} ← k is the constant of variation

To find k use the condition y = 3 when x = 6, that is

3 = \frac{k}{6} ( multiply both sides by 6 )

18 = k

The constant of variation is k = 18

7 0
3 years ago
Name a pair of adjacent angles
likoan [24]

Answer:

Angle 1 and Angle 2 are adjacent angles.

8 0
2 years ago
(-0.2)(0.4 I don’t know how to do this question
Zepler [3.9K]

Answer:

-0.08

Step-by-step explanation:

Multiply.

-0.2

x 0.4

_____

0 0 8

Each number you started out with has 1 space between the last number and the decimal, so your final answer will have 2 spaces.

Also, since you multiplied a negative and a positive, your final answer will be negative.

6 0
3 years ago
Other questions:
  • Abigail drove 84 miles in 4 hours. If she continued at the same rate, how far would she travel in 14 hours?
    7·2 answers
  • to avoid a small private plane, a helicopter descends 2,640 feet in 3.2 minutes. what was the helicopters average rate of descen
    9·1 answer
  • Use a geometric model to factor x + x - 2 by following these
    10·2 answers
  • Solve each of the quadratic equations 3x=0.5x2
    14·1 answer
  • Click an item in the list or group of pictures at the bottom of the problem and, holding the button down, drag it into the corre
    13·1 answer
  • Simplify the following, leaving your answer in index form- attached document.
    9·1 answer
  • What is the order of rotational symmetry for the figure?<br> A. 3<br> B. 1<br> C. 2<br> D. 4 or more
    14·2 answers
  • Does -3(4-3x)=9x-12 have any equations?
    14·1 answer
  • A bag contains 4 blue marbles, 3 white marbles, and 2 pink marbles. What is the probability of NOT drawing a white marble?
    6·2 answers
  • Please help <br> Only one question <br> 5 points <br> What is the value of x
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!