Answer:
I'll inform them that the possibility of all their future children/offspring being phenotypically sickle-celled is very high.
Explanation:
Sickle cell is an inherited disease condition in which the red blood cells of the blood loses its shape and hence, dies or gets broken down. It has to do with the blood genotype of an individual. There are three major types of blood genotypes in humans namely: AA, AS, and SS. SS is the recessive genotype that codes for the sickle cell trait.
Hence, a human with the sickle cell trait has a genotype- SS. Therefore, according to this question, a man and a woman, each with sickle-cell trait (SS), were planning to marry, This will mean that both the man and the woman will always produce a gamete with S allele, which will combine to form an SS offspring. In other words, all of the offsprings of this man and woman will be sickle-celled.
It is A a cell also knows as white cell
Answer: Crossing-over allows the genes that come from each parent to recombine before they are passed on to future generations because chromatids of homologous chromosomes mate and exchange sections of their DNA.
Explanation:
Chromosome crossing-over is the process by which chromatids of homologous chromosomes mate and exchange sections of their DNA during prophase I of meiosis, when pairs of homologous chromosomes, or of the same type, are aligned. The chromatids of the homologous chromosomes break off in the chiasmas and rejoin to allow recombination of the linked genes. So it occurs when regions at chromosome breaks mate and then reconnect to the other chromosome. <u>The result of this process is an exchange of genes, called genetic recombination</u>.
This allows the genes that come from each parent to recombine before they are passed on to future generations. Then, <u>it is an important source of genetic variability</u>, since it involves an exchange of segments between homologous chromosomes during the development of gametes. <u>This process allows that the descendants of an individual are genetically very different</u>, since it is very unlikely that an individual produces two equal gametes, because all of them have different segments of the homologous chromosomes.
I would go with A, they inherited the wings even though they don't need them today, since evolution has changed the Ostrich in some way.
Answer:
Mountains, hills, plateaus, and plains are the four major types of landforms. Tectonic plate movement under the Earth can create landforms by pushing up mountains and hills. Erosion by water and wind can wear down land and create landforms like valleys and canyons.
Explanation: