1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GarryVolchara [31]
2 years ago
6

The relationship between the height of a tree, the distance between the location of a man and the base of the tree, and the angl

e of elevation are represented by the diagram below.
Which of these best represents the angle of elevation, x?

A
22°

B
90°

C
38°

D
68°

Mathematics
2 answers:
Helen [10]2 years ago
7 0

Answer:

C is the answer (98%)

Step-by-step explanation:

pls mark brainliest

Leviafan [203]2 years ago
6 0
Answer is C. 98 degrees
You might be interested in
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
How do I solve 18=6(2x-8)
lisabon 2012 [21]

Answer:

x=11/2

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
There are 96 girls and 72 boys who want to participate in 6th grade intramurals.
Gekata [30.6K]

Answer:

i) 24

ii) 4 girls, 3 boys

Step-by-step explanation:

The GCF is 24

96= 24*<u>4</u>

72= 24*<u>3</u>

<u />

<u />

<u>I hope this helps!</u>

5 0
3 years ago
Sam wants to leave an 18% tip for his dinner. The bill is for $23.50. Which equation could be used to find the total amount that
lora16 [44]

Answer:

(0.18 x 23.50) + 23.50

Step-by-step explanation:

First, find the percentage of 23.50 (equation in the parenthesis). 18% is equivalent to 0.18. Then, you add that to 23.50. That's the total amount Sam should pay. I hope this makes sense.

3 0
2 years ago
How can you find the solution of a system of linear equations by graphing
BigorU [14]

Answer:

The solution of such a system is the ordered pair that is a solution to both equations. To solve a system of linear equations graphically we graph both equations in the same coordinate system. The solution to the system will be in the point where the two lines intersect.

8 0
2 years ago
Read 2 more answers
Other questions:
  • ASAP HELP PLEASE!!!<br> What is the value of x?
    11·1 answer
  • which descriptions from the list below describe the relationship between xyz and uvw check all that apply
    15·2 answers
  • Why is no one helping or answering ANY of my questions asked so far? :( I thought it said questions are normally answered with-i
    11·1 answer
  • How do you divide a fraction
    14·2 answers
  • Mr seidel filled up his 14 gallon gas tank for $29.96 what was the price per gallon
    6·1 answer
  • Can anyone help ? :(
    13·1 answer
  • Suppose you are given information about a triangle according to SSS, SAS, and ASA. For which of these can you immediately use th
    9·2 answers
  • Is y=−2+5x a linear function?
    10·1 answer
  • 4 quarters are equal in value to 10 dimes.
    6·1 answer
  • Please Answer This N o w
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!