Answer:
B
Step-by-step explanation:
Givens
a = 2 sqrt(3)
b = 3 sqrt(2)
c = ?
Formula
a^2 + b^2 = c^2
Solution
- (2sqrt(3))^2 = 2*2 * sqrt(3)*sqrt(3)
- (2sqrt(3))^2 = 4 * 3
- (2sqrt(3))^2 = 12
- (3sqrt(2))^2 = 3 * 3 * sqrt(2)*sqrt(2)
- (3sqrt(2))^2 = 9 * 2
- (3sqrt(2))^2 = 18
(2sqrt(3)^2 + 3sqrt(2)^2 ) = c^2
4*3 + 9*2 = c^2
12 + 18 = c^2
c^2 = 30
sqrt(c)^2 = sqrt(30)
c = sqrt(30)
Answer
B
Answer:B
Step-by-step explanation:
Answer:
x=-7
Step-by-step explanation:
Solve by isolating x on the left-hand side:

(1) circumference of a circle = 2π.R
(2) area of a circle = π.R²
Area = 452.16 m² (given), so we can calculate the radius:
452.16 = π.R²
452.16/π = R²
143.92 = R² → R =√143.92 ≈ 12 m
Having R = 12, now we can calculate the circumference :
circumference of a circle = 2π.R = 2.π.12 = 75.41 m