It should be g(-3π) = sec(-3π)
I hope that helped.
Answer:
Expression B: 0.8p
Expression D: p - 0.2p
Step-by-step explanation:
The regular price of an item at a store is p dollars. The item is on sale for 20% off the regular price. Some of the expressions shown below represent the sale price, in dollars, of the item.
Expression A: 0.2p
Expression B: 0.8p
Expression C:1 - 0.2p
Expression D: p - 0.2p
Expression E: p - 0.8p
Which two expressions each represent the sale price of the item?
Regular price of the item = $p
Sale price = 20% off regular price
Sale price = $p - 20% of p
= p - 20/100 * p
= p - 0.2 * p
= p - 0.2p
= p(1 - 0.2)
= p(0.8)
= 0.8p
The sale price is represented by the following expressions
Expression B: 0.8p
Expression D: p - 0.2p
Answer:
(3m-4/5)2
Final result :
(15m - 4)2
——————————
52
Step by step solution :
Step 1 :
4
Simplify —
5
Equation at the end of step 1 :
4
(3m - —)2
5
Step 2 :
Rewriting the whole as an Equivalent Fraction :
2.1 Subtracting a fraction from a whole
Rewrite the whole as a fraction using 5 as the denominator :
3m 3m • 5
3m = —— = ——————
1 5
Equivalent fraction : The fraction thus generated looks different but has the same value as the whole
Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator
Adding fractions that have a common denominator :
2.2 Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
3m • 5 - (4) 15m - 4
———————————— = ———————
5 5
Equation at the end of step 2 :
(15m - 4)
(—————————)2
5
Step 3 :
Final result :
(15m - 4)2
———
52
Step-by-step explanation:
<span>Located at intersection of the angle bisectors. See Triangle incenter definition</span>
Answer:
General Formulas and Concepts:
<u>Pre-Algebra I</u>
- Order of Operations: BPEMDAS
<u>Algebra I</u>
- Midpoint Formula:
Step-by-step explanation:
<u>Step 1: Define</u>
R (9, 3)
S (-1, -9)
<u>Step 2: Find midpoint</u>
- Substitute:
- Subtract:
- Divide: