y = 9ln(x)
<span>y' = 9x^-1 =9/x</span>
y'' = -9x^-2 =-9/x^2
curvature k = |y''| / (1 + (y')^2)^(3/2)
<span>= |-9/x^2| / (1 + (9/x)^2)^(3/2)
= (9/x^2) / (1 + 81/x^2)^(3/2)
= (9/x^2) / [(1/x^3) (x^2 + 81)^(3/2)]
= 9x(x^2 + 81)^(-3/2).
To maximize the curvature, </span>
we find where k' = 0. <span>
k' = 9 * (x^2 + 81)^(-3/2) + 9x * -3x(x^2 + 81)^(-5/2)
...= 9(x^2 + 81)^(-5/2) [(x^2 + 81) - 3x^2]
...= 9(81 - 2x^2)/(x^2 + 81)^(5/2)
Setting k' = 0 yields x = ±9/√2.
Since k' < 0 for x < -9/√2 and k' > 0 for x >
-9/√2 (and less than 9/√2),
we have a minimum at x = -9/√2.
Since k' > 0 for x < 9/√2 (and greater than 9/√2) and
k' < 0 for x > 9/√2,
we have a maximum at x = 9/√2. </span>
x=9/√2=6.36
<span>y=9 ln(x)=9ln(6.36)=16.66</span>
the
answer is
(x,y)=(6.36,16.66)
Answer:
3216.9
Step-by-step explanation:
We can calculate for the slope of the line using the
formula:
m = (y2 – y1) / (x2 – x1)
From the given values:
m = (4,000 – 10,000) ft / (15 – 0) min
m = -400 ft/min
This means that the altitude is decreasing by 400 ft per
minute.
> The slope is –400 . This means that the helicopter
descends 400 ft each minute.
Bottom left of triangle
48+2x=180
2x=132
x=66
Answer:x=66
Hope this helps:)