Answer:

Step-by-step explanation:
The ratio of the side lengths (AB) and (BC) is given. One is also given an expression for the side lengths of each of these sides. Set up a proportion to describe this scenario, then solve using cross products;

Substitute,

Cross products,


Inverse operations,

 
        
             
        
        
        
Answer:
The resultant velocity of the airplane is 213.41 m/s.
Step-by-step explanation:
Given that,
Velocity of an airplane in east direction, 
Velocity of wind from the north, 
Let east lies in the direction of the positive x-axis and north in the direction of the positive y-axis.
We need to find the resultant velocity of the airplane. Let v is the resultant velocity. It can be calculated as :


v = 213.41 m/s
So, the resultant velocity of the airplane is 213.41 m/s. Hence, this is the required solution.
 
        
             
        
        
            
            
                Which data set has an outlier? 25, 36, 44, 51, 62, 77 3, 3, 3, 7, 9, 9, 10, 14 8, 17, 18, 20, 20, 21, 23, 26, 31, 39 63, 65, 66, 
                umka21 [38]             
         
        
It's hard to tell where one set ends and the next starts.  I think it's
A. 25, 36, 44, 51, 62, 77
B. 3, 3, 3, 7, 9, 9, 10, 14
C. 8, 17, 18, 20, 20, 21, 23, 26, 31, 39
D. 63, 65, 66, 69, 71, 78, 80, 81, 82, 82
Let's go through them.
A. 25, 36, 44, 51, 62, 77
That looks OK, standard deviation around 20, mean around 50, points with 2 standard deviations of the mean.
B. 3, 3, 3, 7, 9, 9, 10, 14
Average around 7, sigma around 4, within 2 sigma, seems ok.
C. 8, 17, 18, 20, 20, 21, 23, 26, 31, 39
Average around 20, sigma around 8, that 39 is hanging out there past two sigma.  Let's reserve judgement and compare to the next one.
D. 63, 65, 66, 69, 71, 78, 80, 81, 82, 82
Average around 74, sigma 8, seems very tight.
I guess we conclude C has the outlier 39.  That one doesn't seem like much of an outlier to me; I was looking for a lone point hanging out at five or six sigma.