Answer:
The product of the slopes of lines is -1.
i.e. m₁ × m₂ = -1
Thus, the lines are perpendicular.
Step-by-step explanation:
The slope-intercept form of the line equation

where
Given the lines
y = 2/3 x -3 --- Line 1
y = -3/2x +2 --- Line 2
<u>The slope of line 1</u>
y = 2/3 x -3 --- Line 1
By comparing with the slope-intercept form of the line equation
The slope of line 1 is: m₁ = 2/3
<u>The slope of line 2</u>
y = -3/2x +2 --- Line 2
By comparing with the slope-intercept y = mx+b form of the line equation
The slope of line 2 is: m₂ = -3/2
We know that when two lines are perpendicular, the product of their slopes is -1.
Let us check the product of two slopes m₁ and m₂
m₁ × m₂ = (2/3)(-3/2
)
m₁ × m₂ = -1
Thus, the product of the slopes of lines is -1.
i.e. m₁ × m₂ = -1
Thus, the lines are perpendicular.
Answer: By putting it on a graph
Step-by-step explanation:
Answer:
x=10
m=3
Step-by-step explanation:
The angles are the same since the sides are the same length (isosceles triangle)
55 = 5x+5
Subtract 5
55-5 =5x+5-5
50 = 5x
Divide by 5
50/5 = 5x/5
10=x
The altitude is a perpendicular bisector so
5m-3 = 2m+6
Subtract 2m from each side
5m-3-2m = 2m+6-2m
3m-3 = 6
Add 3 to each side
3m-3 +3 =6+3
3m =9
Divide by 3
3m/3 = 9/3
m =3
Are you sure this is the COMPLETE problem?