1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Setler79 [48]
2 years ago
13

Solve the question ~

Mathematics
2 answers:
erica [24]2 years ago
8 0

Applying the rule of PEDMAS, 1 + 1 ÷ 2 × 2^-1 = 1¼

<h3>What is the PEDMAS Rule?</h3>

Based on the PEDMAS rule, mathematical operations should be solved in the following order: <em>parenthesis, exponents, division, multiplication, addition, and subtraction.</em>

Given:

1 + 1 ÷ 2 × 2^-1

  • Solve exponents

1 + 1 ÷ 2 × ½

  • Divide

1 + ½ × ½

  • Multiply

1 + ¼

  • Add

1¼

Therefore, applying the rule of PEDMAS, 1 + 1 ÷ 2 × 2^-1 = 1¼

Learn more about PEDMAS on:

brainly.com/question/345677

Anvisha [2.4K]2 years ago
5 0

Answer:

The answer is <u>1.25</u>.

Step-by-step explanation:

<h3><u>Solution</u> :</h3>

\dashrightarrow{\tt{1 + 1 \div  2\times {2}^{ - 1}}}

According to the bodmas rule. Firstly, solving division

\dashrightarrow{\tt{1 +  \dfrac{1}{2} \times  {2}^{ - 1}}}

\dashrightarrow{\tt{1 +  \cancel{\dfrac{1}{2}} \times {2}^{ - 1}}}

\dashrightarrow{\tt{1 + 0.5 \times {2}^{ - 1}}}

Now, using law of exponent rule to evaluate 2‐¹

\dashrightarrow{\tt{1 + 0.5 \times \dfrac{1}{{2}^{1}}}}

\dashrightarrow{\tt{1 + 0.5 \times \dfrac{1}{2}}}

\dashrightarrow{\tt{1 + 0.5 \times \cancel{\dfrac{1}{2}}}}

\dashrightarrow{\tt{1 + 0.5 \times 0.5}}

According to bodmas rule. Solving multiplication.

\dashrightarrow{\tt{1 +  \dfrac{5}{10} \times  \dfrac{5}{10}}}

\dashrightarrow{\tt{1 +  \dfrac{5 \times 5}{10 \times 10}}}

\dashrightarrow{\tt{1 +  \dfrac{25}{100}}}

\dashrightarrow{\tt{1 +  \cancel{\dfrac{25}{100}}}}

\dashrightarrow{\tt{1 + 0.25}}

Now, according to bodmas rule. Solving addition.

\dashrightarrow{\tt{1.25}}

\dag \: {\underline{\boxed{\frak{\red{1.25}}}}}

Hence, the answer is 1.25.

\begin{gathered}\end{gathered}

<h3><u>Learn More</u> :</h3>

✧ Algebraic identities :

⠀⇢ (a+b)²+(a-b)² = 2a²+2b²

⠀⇢ (a+b)²-(a-b)² = 4ab

⠀⇢ (a+b)(a -b) = a²-b²

⠀⇢ (a+b+c)² = a²+b²+c²+2ab+2bc+2ca

⠀⇢ (a-b)³ = a³-b³-3ab(a-b)

⠀⇢ (a³+b³) = (a+b)(a²-ab+b²)

⠀⇢ a²+b² = (a+b)²-2ab

⠀⇢ a³-b³ = (a-b)(a²+ab +b²)

⠀⇢ If a + b + c = 0 then a³ + b³ + c³ = 3abc

✧ BODMAS :

↝ BODMAS rule is an acronym used to remember the order of operations to be followed while solving expressions in mathematics.

It stands for :-

⠀ »» B - Brackets,

⠀ »» O - Order of powers or roots,

⠀ »» D - Division,

⠀ »» M - Multiplication 

⠀ »» A - Addition

⠀ »» S - Subtraction.

↝ It means that expressions having multiple operators need to be simplified from left to right in this order only.

✧ BODMAS RULE :

↝ First, we solve brackets, then powers or roots,then division or multiplication (whatever comes first from the left side of the expression), and then at last subtraction or addition.

⠀ ↠ Addition (+)

⠀ ↠ Subtraction (-)

⠀ ↠ Multiplication (×)

⠀ ↠ Division (÷)

⠀ ↠ Brackets ( )

✧ EXPONENT :

↝ The exponent of a number says how many times to use the number in a multiplication.

✧ LAW OF EXPONENT :

The important laws of exponents are given below:

⠀ ➠ {\rm{{a}^{m} \times {a}^{n} = {a}^{m + n}}}

⠀ ➠ {\rm{{a}^{m}/{a}^{n} = {a}^{m - n}}}

⠀ ➠ {\rm{({a}^{m})^{n} = {a}^{mn}}}

⠀ ➠ {\rm{{a}^{n}/{b}^{n} = ({a/b})^{n} }}

⠀ ➠ {\rm{{a}^{0} = 1}}

⠀ ➠ {\rm{{a}^{ - m} = {1/a}^{m}}}

⠀ ➠ {\rm{{a}^{\frac{1}{n} } = \sqrt[n]{a}}}

<u>▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬</u>

You might be interested in
List 3 values that would make this inequality true 4n &lt;_ 12
timama [110]
<span>Divide both sides by 4 to get

4n \le 12

\frac{4n}{4} \le \frac{12}{4}

n \le 3

So we can pick n to be 3 or it can be less than 3

Three values we can pick are: n = 0, n = 1, n = 2

Or we could pick: n = 1, n = 2, n = 3

</span>
4 0
3 years ago
Given that angle a = 72° and angle b = 37°, work out x.
Sedbober [7]

Answer:

x is 71

Step-by-step explanation:

X + 72 + 37 = 180 ( Sum of angles in a triangle)

X = 180 - 72 - 37

X = 71

8 0
2 years ago
Reflect the figure over the line y-2.<br><br><br> Please help
Lana71 [14]
(5,0) (9,6) (7,7) (2,7)
8 0
3 years ago
1. Determine el valor de W en las proporciones siguientes:<br> a) (12/w) = (4/3); w =
8090 [49]

Aplicando multiplicación cruzada, tiene-se que el valor de w es w = 9.

  • Cuando una proporción es dada, con una igualdade de duas proporciones, puede-se aplicar multiplicación cruzada entre ellas.

En este problema, la ecuación que relaciona las proporciones es dada por:

\frac{12}{w} = \frac{4}{3}

Aplicando multiplicación cruzada:

4w = 12(3)

4w = 36

w = \frac{36}{4}

w = 9

El valor de w es w = 9.

Un problema similar es dado en brainly.com/question/24615636

6 0
2 years ago
QUICK QUICK PLEASE ANSWER THIS NOW!
aev [14]

rylie purchases 5 cans

4 0
3 years ago
Read 2 more answers
Other questions:
  • 6 plus 6 plus 6 time 2 equals?
    13·2 answers
  • The total annual premium for health insurances for Brooke is $8340. Her employer pay 70% of the premium and deducts the remainde
    5·1 answer
  • Elias scored 32, 75, 79, 81, 84, and 85 on six science tests. Which measure of central tendency best describes his scores?
    8·2 answers
  • 5. For the function y = 0.5 - 6%, as I approaches negative infinity, what do the y-values approach?
    15·1 answer
  • When constructing parallel lines, how are the steps similar
    13·1 answer
  • Which Greek mathematician wrote the most definitive text on geometry, one that is still referred to today?
    11·1 answer
  • Help please Number 4!!! Please show me how you did it!!
    15·1 answer
  • Helpppp plisss!!!!!!!!!
    9·1 answer
  • If 18% of a number is 24, find 3% of that number. You must show your work in the work space.
    11·1 answer
  • Two vertical angles are complementary. Statement is always, sometimes, or never true. Explain your reasoning
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!