41/120= 0.3416
34% out of 100%
.34 multiplied by 360 degrees
122.4 degrees
Answer:
Step-by-step explanation:
Sum of all angles of triangle = 180
39 + 102 + x = 180
141 + x = 180
Subtract 141 from both sides
x = 180 - 141
x = 39
Answer:
Step-by-step explanation:
300 miles
125/2.5= 50 miles per hour
50*6=300
7x³ = 28x is our equation. We want its solutions.
When you have x and different powers, set the whole thing equal to zero.
7x³ = 28x
7x³ - 28x = 0
Now notice there's a common x in both terms. Let's factor it out.
x (7x² - 28) = 0
As 7 is a factor of 7 and 28, it too can be factored out.
x (7) (x² - 4) = 0
We can further factor x² - 4. We want a pair of numbers that multiply to 4 and whose sum is zero. The pairs are 1 and 4, 2 and 2. If we add 2 and -2 we get zero.
x (7) (x - 2) (x + 2) = 0
Now we use the Zero Product Property - if some product multiplies to zero, so do its pieces.
x = 0 -----> so x = 0
7 = 0 -----> no solution
x - 2 = 0 ----> so x = 2 after adding 2 to both sides
x + 2 = 0 ---> so = x - 2 after subtracting 2 to both sides
Thus the solutions are x = 0, x = 2, x = -2.
Answer: 195.5 or 12 7/32
Step-by-step explanation:
There is no letter tetha in the table so I use α instead. However it is not sence to final result.
The expression is:
(sinα+cosα)/(cosα*(1-cosα))
Lets divide the nominator and denominator by cosα
(sinα/cosα+cosα/cosα)/(cosα*(1-cosα)/cosα)= (tanα+1)/(1-cosα)=
=(8/15+1)/(1-cosα)= 23/(15*(1-cosα)) (1)
As known cos²α=1-sin²α (divide by cos²α both sides of equation)
cos²a/cos²α=1/cos²α-sin²α/cos²α
1=1/cos²α-tg²α
1/cos²α=1+tg²α
cos²α=1/(1+tg²α)
cosα=sqrt(1/(1+tg²α))= +-sqrt(1/(1+64/225))=+-sqrt(225/(225+64))=
=+-sqrt(225/289)=+-15/17 (2)
Substitute in (1) cosα by (2):
1st use cosα=15/17
1) 23/(15*(1-cosα)) =23/(15*(1-15/17))= 23*17/2=195.5
2-nd use cosα=-15/17
2)23/(15*(1-cosα)) =23/(15*(1+15/17))= 23*17/32=12 7/32