Answer:
A task time of 177.125s qualify individuals for such training.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by

After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X. Subtracting 1 by the pvalue, we This p-value is the probability that the value of the measure is greater than X.
In this problem, we have that:
A distribution that can be approximated by a normal distribution with a mean value of 145 sec and a standard deviation of 25 sec, so
.
The fastest 10% are to be given advanced training. What task times qualify individuals for such training?
This is the value of X when Z has a pvalue of 0.90.
Z has a pvalue of 0.90 when it is between 1.28 and 1.29. So we want to find X when
.
So




A task time of 177.125s qualify individuals for such training.
Answer:
The answer is The function is decreasing for all real values of x
where
-1<x<4.
Step-by-step explanation:
Given that the concentration has been modeled by the formula:
C(t)=50t/(t^2+25)
where:
t is time in hours.
The concentration after 5 hours will be given by:
t= 5 hours
plugging the value in the equation we get:
C(5)=(50(5))/(5^2+25)
simplifying the above we get:
C(5)=250/(50)=5 mg/dl
Answer: 5 mg/dl