Answer:
Consider an n-type silicon semiconductor at T = 300°K in which Nd = 1016 cm-3 and Na = 0. The intrinsic carrier concentration is assumed to be ni = 1.5 x 1010 cm-3. - Comment Nd >> ni, so that the thermal-equilibrium majority carrier electron concentration is essentially equal to the donor impurity concentration.
Explanation:
Answer:

Explanation:
It is given that,
Mass of the car, m = 763 kg
Speed of the car, v = 26 m/s
Mass of the iron, m' = 15 kg
Specific heat of iron, c = 450 J/kg
When the car is in motion, it will possess kinetic energy. It is given by :


K = 257894 J
Since, energy is absorbed by the brakes. The kinetic energy of the car is absorbed by the brakes. So,

is the increase in temperature of the brakes



So, the increase in temperature of the brakes is 38.20 degrees Celsius. Hence, this is the required solution.
Answer:
5.3 hours
Explanation:
(3180 km) / (600 km/h) = 5.3 hours
Answer:
Magnitude of the resultant vector is R = 6.81 m
Explanation:
Given :
Vector A having magnitude of 2.5 m
Vector A having direction 37 degree south of east.
Vector B having magnitude of 3.5 m
Vector B having direction 20 degree north of east.
Therefore, the angle between the two vectors is, θ = 37+20 = 57 degree
So, the resultant of the two vectors are given by




R = 6.81 m