IF there is no air resistance, then he could drop a feather, a piece
of Kleenex, a school bus, and a battleship. If he dropped them all
at the same time from the same height, they would all hit the ground
at the same time.
Answer:
0.265
Explanation:
Draw a free body diagram. There are four forces:
Normal force Fn pushing up.
Weight force mg pulling down.
Tension force T at an angle θ.
Friction force Fn μ pushing left.
Sum the forces in the y direction:
∑F = ma
Fn + T sin θ − mg = 0
Fn = mg − T sin θ
Sum the forces in the x direction:
∑F = ma
T cos θ − Fn μ = 0
Fn μ = T cos θ
μ = T cos θ / Fn
μ = T cos θ / (mg − T sin θ)
Given T = 164 N, θ = 10.0°, m = 65.0 kg, and g = 9.8 m/s²:
μ = (164 N cos 10.0°) / (65.0 kg × 9.8 m/s² − 164 N sin 10.0°)
μ = 0.265
Answer:

Explanation:
Given that,
The spring constant of spring 1, 
The motion of the object on spring 1 has twice the amplitude as the motion of the object on spring 2, 
As the magnitude of the maximum velocity is the same in each case, it means the maximum kinetic energy is same in each case. In other words, the total energy is same.




So, the spring constant of spring 2 is 920 N/m. Hence, this is the required solution.
Answer;
3.45 × 10^-1
Explanation;
-Here we wish to write the number 0.345 as a coefficient times 10 raised to an exponent. To convert to scientific notation, start by moving the decimal place in the number until you have a coefficient between 1 and 10; here it is 3.45.
-The number of places to the left that you had to move the decimal point is the exponent.
= 0.345
= 3.45/10
= 3.45 × 10^-1
Answer:
50.2 meters
Explanation:
When an object falls, it goes a distance d in time t according to the formula:

d is the distance in meter, g is the acceleration due to gravity with the value of 9.8
, t is the time in seconds
Therefore, 
d= 50.176 ≈ 50.2m