Answer:
a) 3/64 = 0.046 (4.6%)
b) 63/64 = 0.9843 (98.43%)
c) 1/64 = 0.015 (1.5%)
d) 1/4 = 0.25 (25%)
Step-by-step explanation:
in order to verify that the f(x) is a probability mass function , then it should comply the requirement that the sum of probabilities over the entire space of x is equal to 1. Then
∑f(x)*Δx = 1
if f(x)=(3/4)(1/4)^x , x = 0, 1, 2, ...
then Δx=1 and
∑f(x) = (3/4)∑(1/4)^x = (3/4)* [ 1/(1-1/4)] = (3/4)*(4/3) = 1
then f represents a probability mass function
a) P(X = 2)= f(x=2) = (3/4)(1/4)^2 = 3/64 = 0.046 (4.6%)
b) P(X ≤ 2) = ∑f(x) = f(x=0)+ f(x=1) + f(x=2) = (3/4) + (3/4)(1/4) + 3/64 = 63/64 = 0.9843 (98.43%)
c) P(X > 2)= 1- P(X ≤ 2) = 1 - 63/64 = 1/64 = 0.015 (1.5%)
d) P(X ≥ 1) = 1 - P(X < 1) = 1 - f(x=0) = 1- 3/4 = 1/4 = 0.25 (25%)
Answer:
53&8
Step-by-step explanation:
38-23=15
23+15+15=53
23-15=8
Answer:
The second one:
L∪J={i,j,k,l,m,n,o}
Step-by-step explanation:
The union is the elements listed in either set.
So since l,m,n, and o are elements of set L, they will also be elements of whatever it is "unioned" with.
Since i,j,k,l and m are elements of set J, they will also be elements of whatever it is "unioned" with.
When you write the union, just be sure to include each element that occurs in either set once.
So the union of L and J is {i,j,k,l,m,n,o}.
The answer is the second one.
The intersection would actually be that upside down U thing, the ∩ symbol. The intersection of two sets is a list of elements that both sets include. So here the intersection would just consist of the elements l amd m.
[B] The ratios in Table B are greater than the ratios in Table A.
Step-by-step explanation:
Can i get brainlist
Answer:
121
Step-by-step explanation:
trust me i got you wuth that 2016 throwback