Answer:
Hypothesis testing of ' significance of difference between means'
Step-by-step explanation:
Study conducted to tests whether oxygen level prior SAT score improves test score. This can be done through - Hypothesis testing of ' significance of difference between means'.
Where x1 & x2 represent mean values of SAT test score before (or without) & after (or with) oxygen.
Null hypothesis [H0] = x1 = x2 , Alternate Hypothesis [H1] : x1 < x2
Answer:
y+3 = 2(x-4)
Step-by-step explanation:
If we have a slope and a point, we can use the point slope form for an equation of a line
y -y1= m(x-x1)
where m is the slope and (x1,y1) is the point
y--3 = 2(x-4)
y+3 = 2(x-4)
Problem: 6|-3|-4|5|
Whenever something is in: |21| in the lines, you would just count the number itself.
So it is: 6·3-4·5 which would equal: 6·3-4·5
The answer to 6·3 is 18, so its 18 minus the answer of 5·4 which is 20.
So its: 18-20= -2
~Hope i helped. :)
Your answer would be B and C
Answer:
A line passing through (1, 3) and (5, 11)
Rate of change = 2
Step-by-step explanation:
- <em>Rate of change = change in y / change in x</em>
- <em>r = Δy/Δx</em>
<u>Let's get the rate of change for each line:</u>
A line passing through (-1, 4) and (1, 7).
- r = (7 - 4) / (1 -(-1)) = 3/2
A line passing through (1, 3) and (5, 11).
- r = (11 - 3) / (5 - 1) = 8/4 = 2
A line passing through (1, 1) and (4, -3).
- r = (- 3 - 1) / (4 - 1) = -4/3
A line passing through (0, 6) and (12, 9)
- r = (9 - 6) / (12 - 0) = 3/12 = 1/4
<u>Comparing the values of r, we can see the greatest one is</u> 2 for the line passing through (1, 3) and (5, 11)