Answer:
The probability is 0.0052
Step-by-step explanation:
Let's call A the event that the four cards are aces, B the event that at least three are aces. So, the probability P(A/B) that all four are aces given that at least three are aces is calculated as:
P(A/B) = P(A∩B)/P(B)
The probability P(B) that at least three are aces is the sum of the following probabilities:
- The four card are aces: This is one hand from the 270,725 differents sets of four cards, so the probability is 1/270,725
- There are exactly 3 aces: we need to calculated how many hands have exactly 3 aces, so we are going to calculate de number of combinations or ways in which we can select k elements from a group of n elements. This can be calculated as:

So, the number of ways to select exactly 3 aces is:

Because we are going to select 3 aces from the 4 in the poker deck and we are going to select 1 card from the 48 that aren't aces. So the probability in this case is 192/270,725
Then, the probability P(B) that at least three are aces is:

On the other hand the probability P(A∩B) that the four cards are aces and at least three are aces is equal to the probability that the four card are aces, so:
P(A∩B) = 1/270,725
Finally, the probability P(A/B) that all four are aces given that at least three are aces is:

We have that
<span>[6x+5]=1+2*(3x+2)
[6x+5]=1+2*3x+2 --------> is not correct ------->1+ 2*(3x+2)=1+2*3x+2*2
then
</span>[6x+5]=1+6x+4---------------> [6x+5]=[6x+5]
<span>this equation is an identity, all real numbers are solutions.</span>
Given that ∠B ≅ ∠C.
to prove that the sides AB = AC
This can be done by the method of contradiction.
If possible let AB
=AC
Then either AB>AC or AB<AC
Case i: If AB>AC, then by triangle axiom, Angle C > angle B.
But since angle C = angle B, we get AB cannot be greater than AC
Case ii: If AB<AC, then by triangle axiom, Angle C < angle B.
But since angle C = angle B, we get AB cannot be less than AC
Conclusion:
Since AB cannot be greater than AC nor less than AC, we have only one possibility. that is AB =AC
Hence if angle B = angle C it follows that
AB = AC, and AB ≅ AC.